

The VPascal Primer
Programming Guide for the V++ Precision Digital Imaging System

PO Box 35-715 • Browns Bay • Auckland 1330 • New Zealand
Phone +64 (21) 736 378, +64 (9) 478 5779 • Fax +64 (9) 479 4750

www.digitaloptics.co.nz

The VPascal Primer
Copyright © 1990 – 2000, Digital Optics Limited.
First Edition (online)
Produced in New Zealand.

All rights reserved. No part of this manual may be reproduced, in any form or by any means,
without the prior written permission of the publisher.

This is the online edition of The VPascal Primer and is formatted for US Letter paper.

V™, V++™, V for Windows™, VPascal™, Digital Optics™, CameraBar™, and “Intelligent Image
Display” ™ are trademarks of Digital Optics Limited.

PVCAM® is a registered trademark of Photometrics Ltd, a division of Roper Scientific Inc.

Microsoft® and Visual Basic® are registered trademarks and Windows™ is a trademark of
Microsoft Corporation.

All brand and product names mentioned in this manual are used for identification purposes only
and may be trademarks or registered trademarks of their respective holders.

V++ is subject to continuous improvement therefore Digital Optics reserves the right to modify its
specifications at any time and without notice. This text is intended to be a fair representation of
certain features and capabilities of V++ but some discrepancies may occur from time to time as
development progresses.

The VPascal Primer 3

Table of Contents

Preface ..8

1.0 Variables and data types...9

1.1 Scalars (numbers)...9

1.2 Arrays (images) ..10

1.3 Strings (text)..10

1.4 Special variables ...11

1.5 Data types..12

1.6 Variables and desktop images...12

2.0 Expressions... 17

2.1 What is an expression? ..17

2.2 Image expressions ..17

2.4 Type precedence ...18

2.4.1 Type precedence rule ..19

2.4.2 Type coercion...19

2.5 String expressions...20

3.0 Accessing pixels in an image ... 21

3.1 Index notation ..21

3.2 Accessing a single pixel..21

3.2 Index-range notation ...22

3.3 Accessing a region...23

3.4 Accessing a row ..25

3.5 Accessing a column ...27

3.6 Accessing frames in a sequence ..29

3.9 Omitting indexes and index-range symbols...33

3.10 Omitting range terminals..34

3.11 Requirements for the right-hand side of an assignment ..35

The VPascal Primer 4

3.11.1 Right-hand side is a number...35

3.11.2 Right-hand side is an array ..36

3.12 Copying a column into a row, etc...38

4.0 Conditional calculations .. 39

4.1 Conditional statements ..39

4.2 Relational operators...39

4.2.1 Relational operators applied to scalars ..40

4.2.2 Relational operators applied to images ..41

4.3 The Any and All functions ...43

4.3.1 The Any function ..43

4.3.2 The All function ..43

4.4 The Find function ..44

4.5 Counting pixels ...46

5.0 Strings and filenames... 47

5.1 String format ..47

5.2 String output functions ..47

5.2.1 Write and Writeln functions..47

5.2.2 WriteInfo and WriteError functions..49

5.3 String input functions ..50

5.3.1 GetString function ..50

5.3.2 SelectString function...51

5.4 String-number conversions...52

5.4.1 Converting a number to a string ...52

5.4.2 Converting a string to a number ...53

5.5 Common string operations..53

5.5.1 Extracting a sub-string ..53

5.5.2 Deleting a sub-string...54

5.5.3 Inserting a sub-string..54

5.5.4 Replacing a sub-string...55

5.5.5 Joining (concatenating) two strings...55

The VPascal Primer 5

5.5.6 Trimming spaces from a string ...56

5.5.7 Comparing strings ..56

5.5.8 Parsing a string into sub-strings ...57

5.6 Filenames...60

5.6.1 Extracting filename components ...60

6.0 File handling ... 62

6.1 Does a file exist?...62

6.2 Searching a sequence of directories for a file ..62

6.3 Iterating over a sequence of files ..63

6.4 File-size and disk-size functions ..65

6.5 Creating a directory...65

6.6 Changing the default directory ..65

7.0 Menus and toolbars.. 66

7.1 Running a module from a menu ..66

7.2 Running a procedure from a menu...66

7.3 Separators and accelerators ...67

7.4 Running a module from a toolbar button ..68

7.5 Running a procedure from a toolbar button ..69

7.6 Naming a toolbar ..70

8.0 Running code at start-up and at shutdown.. 72

8.1 Making a module ready to run at start-up...72

8.2 Running a module at start-up ...72

8.3 Running a procedure at shutdown ...73

9.0 Initialization files ... 74

9.1 What are initialization files? ..74

9.2 Using a private initialization file...74

9.3 Using the V++ initialization file ...76

10.0 Plotting... 77

10.1 Creating a plot window...77

The VPascal Primer 6

10.2 Simple plots..78

10.3 Adding titles and captions...79

10.4 Plotting X and Y data ...80

11.0 Controlling a PVCAM camera.. 81

11.1 Opening and closing a camera...81

11.2 Acquiring and displaying an image...82

11.3 Binning the CCD ..84

11.5 Detecting and handling camera errors ..85

11.5.1 Detecting a camera error ...85

11.5.2 Determining the error code ..85

11.5.3 Displaying a useful error message...87

12.0 Dynamic Data Exchange ... 88

12.1 Sending data to applications via DDE ...89

12.2 Exchanging data with Excel via DDE...89

12.3 Controlling V++ with DDE ..92

12.3.1 Var Topic ...93

12.3.2 Proc Topic..95

12.4 Communication between VPascal modules ..96

12.5 Remote communication with Network DDE ...99

13.0 Controlling laboratory equipment ... 101

13.1 RS-232 serial communications .. 101

13.2 Time lapse imaging.. 105

13.3 Advanced camera programming .. 106

13.3.1 Controlling multiple cameras .. 106

13.3.2 Aborting an exposure .. 110

13.3.3 ICL scripts ... 112

13.4 Controlling a video frame grabber.. 114

13.4.1 Video device architecture ... 114

13.4.2 Acquiring and displaying a video image ... 114

13.4.3 Using a region of interest (ROI) .. 116

The VPascal Primer 7

13.4.4 Asynchronous video capture... 116

13.5 Controlling a TWAIN scanner or camera ... 118

14.0 Linking to external libraries ... 119

14.1 Calling DLL code.. 119

14.1.1 Creating the DLL... 119

14.1.2 Writing the module ... 119

14.1.3 Calling an external routine ... 120

14.1.4 Using images ... 120

14.2 Direct access to image memory... 120

14.2.1 Getting a pointer to image memory... 120

14.2.2 Memory Layout... 122

14.2.3 Accessing the Image Descriptor Block ... 122

14.2.4 Image Descriptor Block (IDB) Layout .. 123

14.3 Implementing Custom Dialog Boxes... 124

14.4 Calling the Windows API ... 125

15.0 Advanced Development .. 126

15.1 VPascal Architectures ... 126

15.1.1 Front-end shell model.. 126

15.1.2 Client-server model... 126

15.1.3 Peer-to-peer model ... 127

15.1.4 Server-only model .. 127

15.1.5 Hybrid models .. 127

The VPascal Primer 8

Preface
Welcome to The VPascal Primer - the complete introduction to the VPascal automation language
and its application to practical problems in digital image processing.

VPascal is the powerful built-in automation language in Digital Optics' well known V++ product.
Programs written in VPascal (called automation modules or just modules) can be very simple,
perhaps performing just a few common image processing tasks, or extremely complex, controlling
an entire experiment consisting of cameras, laboratory equipment and user interaction.

The VPascal Primer is designed to give V++ users an in-depth understanding of how to apply the
VPascal automation language to their own imaging applications. It teaches you how to build
effective imaging routines, customize the V++ user interface, and automate control of a PVCAM
camera. There is also ample material covering the fundamentals or programming for beginners.

Later chapters focus on advanced techniques for developing imaging applications using VPascal.
These include structuring your application, using DDE and networking, controlling laboratory
equipment and linking custom functions and dialog boxes to your VPascal modules.

Topics are presented in approximate order of increasing complexity and range from fundamentals
to advanced topics suitable for OEM programmers. Advanced users may safely skip early chapters
that cover material they are already familiar with.

As you learn more about VPascal, please come and visit some of the technical areas of the Digital
Optics web site that address VPascal issues:

http://www.digitaloptics.co.nz/

http://www.digitaloptics.co.nz/technical/technical.htm

http://www.digitaloptics.co.nz/technical/articles.htm

http://www.digitaloptics.co.nz/technical/source/sourcecode.htm

On these pages you will find technical articles and sample VPascal source code, much of which has
been contributed by other users. Your contributions would also be very welcome.

http://www.digitaloptics.co.nz/
http://www.digitaloptics.co.nz/technical/technical.htm
http://www.digitaloptics.co.nz/technical/articles.htm
http://www.digitaloptics.co.nz/technical/source/sourcecode.htm

The VPascal Primer 9

1.0 Variables and data types

1.1 Scalars (numbers)
A scalar is the technical term for number. VPascal supports a wide variety of scalars, as shown in
Table 1.1.1 below.

Scalar Range

Integer numbers -2147483648 to +2147483647

Real numbers ±3.59539E+308

Complex numbers ±3.59539E+308 in each of 2 components

Integer color numbers 0 to 65535 in each of 3 channels

Real color numbers ±3.40282E+38 in each of 3 channels

Boolean numbers FALSE, TRUE

Table 1.1.1 Scalars in VPascal

The type of a scalar is not fixed at compile-time, but is a fluid quantity that changes as required.
For example, the assignment x := -123 makes x an integer-valued scalar because –123 is
compatible with that type. If the next statement is x := sqrt(x), then x becomes complex
because the square root of a negative number must result in a complex result.

Example 1.1.1: Setting the value of a scalar

This example demonstrates the changing nature of a scalar in a module.

var

 a, b, c ;

begin

a := 123 ; // a is an integer

b := 567.678 ; // b is a real nunmber

c := 123 + i*456 ; // c is a complex number

a := sqrt(-a) ; // a is promoted to complex

b := 44 ; // b remains a real number

c := MakeRGB(4, 77, 234) ; // c is promoted to an integer color number

end

Listing 1.1.1 Automatic type changing of scalars in a module.

The VPascal Primer 10

1.2 Arrays (images)
An array is a matrix of numbers. Arrays can be one-, two- or three-dimensional. Furthermore,
V++ supports the widest range of array types. (See Section 1.5: Data types.)

Like scalars, arrays can change their types on the fly, but the rules are slightly more restrictive.
When assigning to the entire array, the type of the array may be changed to accommodate the
type of data being assigned to it. If only a portion (say one pixel, or a range of pixels) of the
image is be assigned to, then the type of data being assigned is changed to that of the array.

Example 1.2.1: Setting the value of a pixel or array

This example demonstrates what happens when a value is assigned to a portion of an array or the
entire array.

var

 A, B, C ;

begin

A := CreateArray(byte, 100, 100) ;

B := CreateArray(single, 100, 100) ;

C := CreateArray(RGB, 100, 100) ;

A[3, 45] := 123 ; // A remains a byte array

A[3, 45] := 2000 ; // A remains a byte array

A := 2000 ; // A is converted to small integer

A := C + B ; // A is promoted to RGB

end

Listing 1.2.1 Situations where the type of an array may change automatically.

1.3 Strings (text)
Strings are stored as arrays of characters. Literal strings appear in a module as a single-quoted
sequence of characters.

The VPascal Primer 11

Example 1.3.1: Strings in a module

This example demonstrates some simple string-related operations.

var

 a, b, c ;

begin

a := 'Digital' ;

b := 'Optics' ;

c := a + ' ' + b ; // c is now 'Digial Optics'

c := UpperCase(c) ; // c is now 'DIGITAL OPTICS'

end

Listing 1.3.1 Strings in a module.

1.4 Special variables
Some variables in a module are special in the sense that they do not fall into the conventional
category of number, image, string, etc. For example, plot windows are referenced via plot
variables, editors (text windows) are referenced via editor variables, and so on.

The VPascal Primer 12

1.5 Data types
V++ supports the greatest variety of data types for image processing. The complete range of
types available for representing images is shown below in Table 1.5.1.

Type Description

Binary 1-bit unsigned integer

Byte 8-bit unsigned integer

Short integer 16-bit signed integer

Word 16-bit unsigned integer

Long integer 32-bit signed integer

Single Single-precision floating-point (32 bits)

Double Double-precision floating-point (64 bits)

Single complex Single-precision complex (32 bits per component)

Double complex Double-precision complex (64 bits per component)

RGB-24 24-bit RGB (8 bits per channel)

RGB-48 48-bit RGB (16 bits per channel)

RGB-float 96-bit floating-point RGB

Table 1.5.1 Image data types

1.6 Variables and desktop images
Arrays can be created in a module for various purposes: to hold a table of results, to represent a
mathematical equation, or to hold the pixel values of an image.

In order to gain access to the pixel values of a desktop image (displayed in the V++ GUI) the
image must be associated with a variable. This makes the image available to the module via a
variable name, just like any other variable.

There are several different ways that a desktop image can be associated with a variable and each
is explored in the examples below.

The VPascal Primer 13

Example 1.6.1 Using the active image

This example shows how to use the active image on the V++ desktop. The active image is the
image that currently has input focus. (A window has focus if its caption bar is not dimmed.) The
procedure GetActiveImage determines which image is the active image, and then connects or
associates the image with the variable A.

var

 A ;

begin

GetActiveImage(A) ; // Associate active image with variable A

A := not A ; // Process the image

end

Listing 1.6.1 Accessing the active image

Example 1.6.2 Using a named image

This example shows how to use an image whose name is known. The procedure GetImage takes
the name of the image and return the association in the variable.

var

 A ;

begin

GetImage('A0001.tif', A) ; // Associate image A0001.tif with variable A

A := not A ; // Process the image

end

Listing 1.6.2 Accessing a named image

The VPascal Primer 14

Example 1.6.3 Testing if a named image exists

A call to GetImage will fail if the named image does not exist. Use the ImageExists function to
determine if an image of the specified name is present on the V++ desktop.

var

 A ;

begin

if ImageExists('A0001.tif') then

 GetImage('A0001.tif', A)

else

 Halt('Image does not exist!') ; // Terminate module if cannot find image

A := not A ;

end

Listing 1.6.3 Accessing a named image after testing that the image exists.

The VPascal Primer 15

Example 1.6.4 Iterating over all images on the desktop

This example demonstrates how to iterate over all the desktop images using GetFirstImage and
GetNextImage. The module associates each image, in turn, with the variable A. It then increments
a count if the image is a 16-bit unsigned image.

var

 Image ;

 Count ;

begin

Count := 0 ;

GetFirstImage(Image) ;

while IsImage(Image) do

 begin

 if TypeOf(Image) = typ_Word then

 Count := Count + 1 ;

 GetNextImage(Image) ;

 end ;

WriteInfo(Count, ' 16-bit unsigned images were found') ;

end

Listing 1.6.4 Looping over all desktop images, counting the number of 16-bit unsigned images.

Example 1.6.5 Determining if there are any desktop images

This example shows how to use the GetImageCount function to determine if there are any images
available on the desktop.

begin

if GetImageCount = 0 then

 Halt('No desktop images found!') ;

{Do something here if there are images}

end

Listing 1.6.5 Determining if there are any desktop images available for processing.

The VPascal Primer 16

Example 1.6.6 Selecting an image from a list

This example demonstrates the SelectImage function as a way to allow the user to select an
image from a list of all desktop images. SelectImage displays a dialog that lists all desktop
images. The user may then make a selection.

var

 Image ;

begin

SelectImage('Choose an image to process', Image) ;

Image := not Image ; // Process the image in some way

end

Listing 1.6.6 Letting the user select an image from a list.

Example 1.6.7 Selecting an image from a list with error recovery

This example demonstrates the SelectImage function as a way to allow the user to select an
image from a list of all desktop images. The SelectImage is a function that returns a code
indicating which button the user pressed on the dialog. This makes it possible to write code that
reacts appropriately when the user presses the Cancel button instead of the OK button.

var

 Image ;

 Code ;

begin

Code := SelectImage('Choose an image to process', Image) ;

if Code = id_OK then

 Image := not Image ; // Process the image if OK pressed

end

Listing 1.6.7 Letting the user select an image from a list. The module copes with the case where the user presses the

Cancel button.

The VPascal Primer 17

2.0 Expressions

2.1 What is an expression?
An expression is a formula that calculates a result of some kind. An expression may involve
strings, numbers, arrays, or even other functions.

The variables and constants involved in an expression are called arguments.

The symbols used to combine the arguments are called operators.

Some example expressions are shown in Table 2.1.1 below.

Example Expression Arguments Operators

X + 3 – Y X

Y

3

+

-

A nand B xor 1234 A

B

1234

nand

xor

(A > 200) and (A <= 500) A

200

500

>

<=

Table 2.1.1 Arguments and operators.

2.2 Image expressions
One of the most powerful features of VPascal is that arrays can be used in expressions just like
ordinary numbers. They can be combined with other arrays or with numbers.

Some example image expressions are shown in Table 2.2.1 below.

The VPascal Primer 18

Example Expression Explanation

C := A – B Image B is subtracted form image A and stored in image

C. This forms the basis of easy background subtraction.

B := 1.25 * (A – 10) A reference level of 10 is subtracted from image A and

the result is scaled by 1.25 before being stored in image

B. The result will be left as a floating-point image.

B := word(1.25 * (A – 10)) Same as the previous example, except the result is

converted to a 16-bit unsigned image before storing in

image B.

B := (A >= 4095) and (A <= 0) Create a binary image that is 1 (TRUE) wherever the

pixels in A exceed the upper or lower thresholds (0 and

4095). Store the result in image B.

A := (A < 10) * A Replace A with a version which is zero wherever the

original pixel values are less than the threshold value

10.

N := SumOf(A = 0) Count the number of pixels equal to zero and store the

result in N.

Table 2.2.1 Example expressions involving images and scalars

2.4 Type precedence
Type precedence refers to the rule used to determine the resultant data type of an expression
when the arguments have differing data types.

For example, if A is a 16-bit unsigned image and B is a 16-bit signed image, should the expression
C := A + B yield a signed or unsigned result?

To resolve such an ambiguity the type precedence rule determines what happens in any
expression.

The VPascal Primer 19

2.4.1 Type precedence rule
When two arguments are combined in an arithmetic or logical expression, the resultant data type
is the more general of the two data types, according to the priorities listed below.

Priority Type Description

1 RGB-float 96-bit floating-point RGB

2 RGB-48 48-bit RGB (16 bits per channel)

3 RGB-24 24-bit RGB (8 bits per channel)

4 Double complex Double-precision complex (64 bits per component)

5 Single complex Single-precision complex (32 bits per component)

6 Double Double-precision floating-point (64 bits)

7 Single Single-precision floating-point (32 bits)

8 Long integer 32-bit signed integer

9 Word 16-bit unsigned integer

10 Short integer 16-bit signed integer

11 Byte 8-bit unsigned integer

12 Binary 1-bit unsigned integer

Table 2.4.1 Priority table showing type precedence

2.4.2 Type coercion
When two differing data types participate in an expression, the least general type must first be
converted to the most general type of the two arguments. Any form of automatic type conversion
is called type coercion.

Type coercion is applied on a strictly mathematical basis, but with a few minor qualifications as
listed in the table below.

The VPascal Primer 20

When these types… Are coerced to these types… This special processing takes place…

Binary, byte, word, short

integer, long integer, single,

double.

RGB-24, RGB-48, RGB-float. The original value becomes the red, green

and blue components of the color.

Binary, byte, word, short

integer, long integer, single,

double.

Complex, double complex. The original value becomes the real part of

the complex number. The imaginary part

is set to zero.

Complex, double complex. RGB-24, RGB-48, RGB-float. The real part of the original value becomes

the red, green and blue components of the

color. The imaginary part is discarded.

RGB-24, RGB-48, RGB-float. Complex, double complex. The red component of the original value

becomes the real component of the

complex number. The imaginary part is set

to zero. The green and blue components

are discarded.

Complex, double complex. Binary, byte, word, short

integer, long integer, single,

double.

The real part of the complex number

becomes the new value. The imaginary

part is discarded.

RGB-24, RGB-48, RGB-float. Binary, byte, word, short

integer, long integer, single,

double.

The red component of the color becomes

the new value. The green and blue

components are discarded.

Table 2.4.2 Special coercion conditions when dealing with composite data types.

2.5 String expressions
String expressions are limited to addition (when joining strings), relational operators (when
establishing equality or order) and function evaluations (such as converting lower case).

The VPascal Primer 21

3.0 Accessing pixels in an image
Images are treated as simple arrays of numbers. An image can have one, two or three
dimensions. Every pixel, or range of pixels, in an image can be easily accessed using a simple
addressing notation.

In all cases pixels, or ranges of pixels, are addressed using square brackets [] to identify
portions of the image.

Within the brackets, the order of the dimensions is always [x-addr, y-addr, z-addr].

3.1 Index notation
Index notation is the term used when a single x-, y- or z-index number is used. For example, if A
is a one-dimensional array, A[4] refers to element 4 of the array.

3.2 Accessing a single pixel

Example 3.2.1: Reading and writing a single pixel

This example shows how a single pixel is read from an image, and an alternative value written
back to the same location. It assumes that the image A is a simple two-dimensional image and
not a sequence. If A is a sequence, see Example 3.2.2 below.

var

 A, Pixel ;

begin

GetActiveImage(A) ;

Pixel := A[3, 5] ;

WriteInfo('Pixel at [3,5] is ',Pixel) ;

A[3, 5] := 0 ;

end

Listing 3.2.1 Accessing a single pixel using index notation.

The VPascal Primer 22

Example 3.2.2: Reading and writing a single pixel in a sequence

This example shows how to extract a single pixel from a specific frame in a sequence, and write
the value to another position in the sequence.

var

 A, Pixel ;

begin

GetActiveImage(A) ;

Pixel := A[3, 5, 9] ;

WriteInfo('Pixel at [3,5] in frame 9 is ',Pixel) ;

A[3, 5, 8] := Pixel ;

end

Listing 3.2.2 Accessing a single pixel in a sequence using index notation.

3.2 Index-range notation
Index-range notation is the term used when a range of pixels is addressed in the x-, y- or z-
directions. Index-range notation is a simple extension of index notation where individual x-, y- or
z-indexes are replaced with x-, y- or z-ranges.

A range of addresses is specified using the notation [start-location .. stop-location]

Index-range notation appears on the right-hand side of an expression when extracting a range of
pixels, and appears on the left-hand side of an expression when assigning new values to the
range of pixels.

The VPascal Primer 23

3.3 Accessing a region
A region is a rectangular portion of an image.

Example 3.3.1: Extracting a rectangular region from an image

This example extracts a rectangular region from an image and displays the result as a new image.

var

 A, B ;

begin

GetActiveImage(A) ;

B := A[100..200, 150..300] ;

Show(B) ;

end

Listing 3.3.1 Extracting a rectangular region from an image.

Example 3.3.2: Moving a rectangular region in an image

This example moves a rectangular region from one part of an image to another location in the
same image.

var

 A, B ;

begin

GetActiveImage(A) ;

B := A[100..200, 150..300] ;

A[500..600, 450..600] := B ;

Update(A) ;

end

Listing 3.3.2 Moving a rectangular region in an image.

The VPascal Primer 24

Example 3.3.3: Avoiding temporary storage

Often there is no need for a temporary variable (B in Example 3.3.2) as is shown in this example.

var

 A ;

begin

GetActiveImage(A) ;

A[500..600, 450..600] := A[100..200, 150..300] ;

Update(A) ;

end

Listing 3.3.3 Moving a rectangular region in an image without temporary storage.

Example 3.3.4: Setting a rectangular region to the same value

When assigning to a region in an image, the right-hand-side can be a number. This example
shows how to set a region of an image to the constant value 128. (This is can be very useful when
clearing image boundaries. See Example 3.3.5 below.)

var

 A ;

begin

GetActiveImage(A) ;

A[500..600, 450..600] := 128 ;

Update(A) ;

end

Listing 3.3.4 Setting all pixels in a rectangular region to the same value

The VPascal Primer 25

Example 3.3.5: Clearing the boundaries of an image

Often it is necessary to clear (set to zero) the boundaries of an image prior to an operation. This
example shows how to clear a 4-pixel wide boundary around the image using index-range
notation.

var

 A, xSize, ySize ;

begin

GetActiveImage(A) ;

GetXYSize(A, xSize, ySize) ;

A[0..3, 0..ySize-1] := 0 ; // Left border

A[ySize-4..ySize-1, 0..ySize-1] := 0 ; // Right border

A[0..xSize-1, 0..3] := 0 ; // Top border

A[0..xSize-1, ySize-4..ySize-1] := 0 ; // Bottom border

Update(A) ;

end

Listing 3.3.5 Clearing an image boundary.

3.4 Accessing a row
When accessing a single row, rather than a rectangular region, it is possible to mix index and
index-range notation.

Furthermore, when referring to an entire row you may omit the starting and stopping indexes,
leaving just the range symbol.

The VPascal Primer 26

Example 3.4.1: Copying part of a row of data

This example copies data from part of one row to another. It mixes the index and index-range
notation.

var

 A ;

begin

GetActiveImage(A) ;

A[100..300, 5] := A[100..300, 7] ; // Copy part of row 7 into row 5

Update(A) ;

end

Listing 3.4.1 Copying part of a row of data.

Example 3.4.2: Copying a complete row of data

This example copies one complete row of pixels to another row. It mixes the index and index-
range notation and also omits the range start and stop indexes.

var

 A ;

begin

GetActiveImage(A) ;

A[.., 5] := A[.., 7] ; // Copy row 7 into row 5

Update(A) ;

end

Listing 3.4.2 Copying a complete row of data to another row.

The VPascal Primer 27

Example 3.4.3: Zeroing hot pixels

This example replaces defective pixels in a row with the constant value 0. (A smarter solution is
shown in Example 3.4.4 below.)

var

 A ;

begin

GetActiveImage(A) ;

A[.., 5] := 0 ; // Zero pixels in defective row 5

Update(A) ;

end

Listing 3.4.3 Zeroing hot pixels in a row.

Example 3.4.4: Repairing hot pixels

This example replaces defective pixels with the average value of rows above and below the
defective row.

var

 A ;

begin

GetActiveImage(A) ;

A[.., 5] := (A[.., 4] + A[.., 6]) / 2 ; // Row 5 is defective

Update(A) ;

end

Listing 3.4.4 Repairing a defective row of pixels.

3.5 Accessing a column
When accessing a single column, rather than a rectangular region, it is possible to mix index and
index-range notation.

Furthermore, when referring to an entire column you may omit the starting and stopping indexes,
leaving just the range symbol.

The VPascal Primer 28

Example 3.5.1: Copying part of a column of data

This example copies data from part of one column to another. It mixes the index and index-range
notation.

var

 A ;

begin

GetActiveImage(A) ;

A[5, 100..300] := A[7, 100..300] ; // Copy part of column 7 into column 5

Update(A) ;

end

Listing 3.5.1 Copying part of a column of data.

Example 3.5.2: Copying a complete column of data

This example copies one complete column of pixels to another column. It mixes the index and
index-range notation and also omits the range start and stop indexes.

var

 A ;

begin

GetActiveImage(A) ;

A[5, ..] := A[7, ..] ; // Copy column 7 into column 5

Update(A) ;

end

Listing 3.5.2 Copying a complete column of data to another column.

The VPascal Primer 29

Example 3.5.3: Zeroing hot pixels

This example replaces defective pixels in a column with the constant value 0. (A smarter solution
is shown in Example 3.5.4 below.)

var

 A ;

begin

GetActiveImage(A) ;

A[15, ..] := 0 ; // Zero pixels in defective column 15

Update(A) ;

end

Listing 3.5.3 Zeroing hot pixels in a column.

Example 3.5.4: Repairing hot pixels

This example replaces defective pixels with the average value of columns left and right of the
defective column.

var

 A ;

begin

GetActiveImage(A) ;

A[15, ..] := (A[14, ..] + A[16, ..]) / 2 ; // Column 15 is defective

Update(A) ;

end

Listing 3.5.4 Repairing a defective row of pixels.

3.6 Accessing frames in a sequence
Accessing one or more frames in a sequence is easy with index-range notation: simply specify the
frame index or indexes as part of the addressing notation.

The VPascal Primer 30

Example 3.6.1: Extracting a complete frame from a sequence

This example extracts a frame from a sequence and displays the result. Note: the x and y index-
range symbols must be present since the addressing must always appear in the order x, y, z.

var

 Seq, Frame ;

begin

GetActiveImage(Seq) ;

Frame := Seq[.., .., 15] ; // Extract frame 15

Show(Frame) ;

end

Listing 3.6.1 Extracting a frame from a sequence.

Example 3.6.2: Extracting part of one frame from a sequence

This example extracts a part of one frame in a sequence and displays the result.

var

 Seq, Frame ;

begin

GetActiveImage(Seq) ;

Frame := Seq[100..200, 30..230, 15] ; // Extract part of frame 15

Show(Frame) ;

end

Listing 3.6.2 Extracting part of one frame from a sequence.

The VPascal Primer 31

Example 3.6.3: Extracting a sub-sequence from a sequence

This example extracts several contiguous frames (a sub-sequence) from a sequence and displays
the result.

var

 Seq, SubSeq ;

begin

GetActiveImage(Seq) ;

SubSeq := Seq[.., .., 15..21] ; // Extract frames 15 thru 21

Show(SubSeq) ;

end

Listing 3.6.3 Extracting a sub-sequence from a sequence.

Example 3.6.4: Setting a range of frames to a constant value

This example sets the specified frames to the value 128.

var

 Seq ;

begin

GetActiveImage(Seq) ;

Seq[.., .., 15..21] := 128 ; // Frames 15 thru 21 now equal 128

Update(Seq) ;

end

Listing 3.6.4 Setting frames in a sequence to a constant value.

The VPascal Primer 32

Example 3.6.5: Copying one frame to another location

This example copies one frame to another location in the sequence.

var

 Seq ;

begin

GetActiveImage(Seq) ;

Seq[.., .., 21] := Seq[.., .., 15] ; // Copy frame 15 to frame 21

Update(Seq) ;

end

Listing 3.6.5 Copying a frame to a new location.

Example 3.6.6: Copying one frame to a range of locations

This example copies one frame to a contiguous range of other locations.

var

 Seq ;

begin

GetActiveImage(Seq) ;

Seq[.., .., 15..21] := Seq[.., .., 3] ; // Copy frame 3 to frames 15 thru 21

Update(Seq) ;

end

Listing 3.6.6 Copying one frame to a range of locations in a sequence.

The VPascal Primer 33

Example 3.6.7: Finding the difference between successive frames in a sequence

This example creates a new sequence equal to the difference between adjacent frames in the
original sequence. This would be useful when examining changes over time in a series of images.

var

 Seq, DiffSeq ;

 z, xSize, ySize, zSize ;

begin

GetActiveImage(Seq) ;

GetXYZSize(Seq, xSize, ySize, zSize) ;

DiffSeq := CreateImage(integer, xSize, ySize, zSize-1) ;

for z := 0 to zSize-2 do

 DiffSeq[.., .., z] := Seq[.., .., z+1] - Seq[.., .., z] ;

Show(DiffSeq) ;

end

Listing 3.6.7 Finding the difference between successive frames in a sequence.

3.9 Omitting indexes and index-range symbols
When using index or index-range notation the referenced dimensions always appear in x-y-z
order, although in some cases not all dimensions need be specified.

Leading dimensions must always be included, even if they are ".." Trailing dimensions may be
omitted, and if so, are assumed to be ".." Some examples are shown in the table below.

Shorthand Reference Interpretation

A[5] A[5, .., ..]

A[.., 5] A[.., 5, ..]

A[5..10] A[5..10, .., ..]

A[5..10, 7] A[5..10, 7, ..]

A[5..10, 7..13] A[5..10, 7..13, ..]

Table 3.9.1 Correct interpretation of shorthand notation.

The VPascal Primer 34

3.10 Omitting range terminals
The starting and stopping indexes on either side of the index-range symbol are called terminals.
The starting index is called the lower terminal and the stopping index is called the upper terminal.

The lower, upper or both terminals may be omitted when using index-range notation. When a
terminal is omitted, a default value is used as shown below.

When this terminal is omitted… This value is used…

Lower terminal Zero

Upper terminal Maximum legal index for the dimension

Table 3.10.1 Default values used when range terminals are omitted.

Example 3.10.1: Zeroing the right-hand side of an image or sequence

This example zeroes the right-hand side of an image or sequence without reference to the actual
size of the array.

var

 A ;

begin

GetActiveImage(A) ;

A[250..] := 0 ; // Columns 0 thru 249 remain intact

Update(A) ;

end

Listing 3.10.1 Zeroing the right-hand side of an image or sequence.

The VPascal Primer 35

Example 3.10.2: Setting a sequence of frames equal to the first frame

This example makes all frames in a sequence equal to the first frame, but without reference to the
length of the sequence.

var

 Seq ;

begin

GetActiveImage(Seq) ;

Seq[.., .., 1..] := Seq[.., .., 0] ;

Update(Seq) ;

end

Listing 3.10.2 Setting a sequence of frames equal to the first frame.

3.11 Requirements for the right-hand side of an assignment

3.11.1 Right-hand side is a number
When the right-hand side of an assignment is a number, the number is copied to every array
location specified on the left-hand side. If the data type of the number is different from the data
type of the array, the number is converted to the same type as the array before being assigned.

Example 3.11.1: Assigning a number to an image

This example assigns a number to arrange of pixel locations in an image. The number is the
integer value 120 whereas the image is 24-bit color. Consequently the number is converted to the
RGB value (120,120,120) before being assigned to the array.

var

 Image, Number ;

begin

Image := CreateImage(RGB, 100, 100) ; // Image is 24-bit color

Number := 120 ; // Number is the integer 120

Image[20..70, 35..80] := Number ; // Number converted to RGB on the fly

Show(Image) ;

end

Listing 3.11.1 Assigning a number to part of an image with type-conversion on the fly.

The VPascal Primer 36

3.11.2 Right-hand side is an array
When the left-hand and right-hand sides of an expression are arrays, they are not required to be
exactly the same size, although a few simple requirements must be satisfied.

The left-hand and right-hand sides are assignment-compatible provided:

The right-hand side contains more elements than is specified by the index-
ranges on the left-hand side

OR

The right-hand side contains fewer elements than is specified by the index-
ranges on the left-hand side BUT the right-hand array and left-hand index-
ranges have the same x-size.

When the right-hand array has a data type different from the left-hand array the data type of the
right-hand array is changed on the fly before the assignment is made.

Example 3.11.2: Array assignment when there are more elements on the right-hand side

In this example, a 70 by 300 region of the image A is extracted to image B and assigned to a 10
by 10 region of the original image A. Only the first 100 pixels from B are required to fulfill the
assignment requirement.

var

 A, B ;

begin

GetActiveImage(A) ;

B := A[0..69, 100..399] ; // Extract 70 by 300 region to B

A[10..19, 30..39] := B ; // Assign first 100 elements of B to A as specified

Update(A) ;

end

Listing 3.11.2 Array assignment when there are more elements on the right-hand side. Elements will be taken from the

right-hand side array as required to satisfy the left-hand side index-ranges.

The VPascal Primer 37

Example 3.11.3: Fixing a CCD image with noisy rows

This example fixes a problem where a CCD camera consistently produces noisy data in the first 3
rows of an image. Rows 0 through 2 are replaced with row 3.

var

 A, B ;

begin

GetActiveImage(A) ;

A[.., 0..2] := A[.., 3] ;

Update(A) ;

end

Listing 3.11.3 Fixing a noisy CCD image by replacing the offending noisy rows with a representative noise-free row.

Example 3.11.4: Creating a "ramp image" from just one row of data

This example creates a one-dimensional ramp and then assigns it to every row in an image. The
for-loop is required for the initial ramp only.

var

 Ramp ;

 Image ;

begin

Ramp := CreateArray(word, 500) ;

Image := CreateArray(word, 500, 400) ;

for i := 0 to 499 do // Make the ramp

 Ramp[i] := i ;

Image[..] := Ramp ; // Copy the ramp to every row of the image

Show(Image) ;

end

Listing 3.11.4 Creating a ramp image using a one-dimensional ramp as a "seed."

The VPascal Primer 38

Example 3.11.5: Creating a "ramp image" using just one for-loop

This example creates a ramp image where each column is filled simultaneously.

var

 Image ;

begin

Image := CreateArray(word, 500, 400) ;

for i := 0 to 399 do

 Image[i, ..] := i ; // Set the value of the entire column

Show(Image) ;

end

Listing 3.11.5 Creating a ramp image using one for-loop.

3.12 Copying a column into a row, etc
It is sometimes necessary to transpose data from an array. The most common example is where a
column of data from one image becomes the row data for another image. This is easily handled by
index-range notation because of the unrestrictive assignment rules.

Example 3.12.1: Copying an image column to a row

This example extracts a column from an image and inserts it into a row. The assignment works
because the actual dimensions of the right-hand side are immaterial if there are sufficient pixels
to fulfill the assignment operation.

Note: The example assumes that the length of a row is the same as the height of a column. If this
is not the case, simply modify the index ranges accordingly.

var

 A ;

begin

GetActiveImage(A) ;

A[.., 5] := A[7, ..] ; // Copy column 7 to row 5. Assumes same size!

Update(A) ;

end

Listing 3.12.1 Copying a column of pixels into a row, assuming a square image.

The VPascal Primer 39

4.0 Conditional calculations

4.1 Conditional statements
A statement is conditional if its execution depends upon the outcome of a logical test.

Conditional statements are of the form

Conditional statement Explanation

if <condition> then

 <statement>

<statement> is executed if <condition> is TRUE

if <condition> then

 <statement-1>

else

 <statement-2>

<statement-1> is executed if <condition> is TRUE
otherwise <statement-2> is executed

In all cases <condition> is an expression that evaluates to a binary scalar value.

4.2 Relational operators
A relational operator compares two quantities and returns TRUE if the relation is satisfied, else it
returns FALSE. The standard relational operators are show in the table below.

Operator Description

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<> Not equal to

= Equal to

Table 4.2.1 Relational operators

The VPascal Primer 40

Notes

1. When the arguments to a relation are of different types, one argument is promoted so that
both have the same type in accordance with the type precedence rules.

2. When the arguments are complex (either single- or double-precision) the relation is
computed using the magnitudes of the complex numbers.

3. When the arguments are color the relation is computed using the intensities of the color
numbers.

4. When both arguments are scalars (simple numbers) the result of the comparison is a scalar
binary value.

5. When one argument is a scalar and the other is an array, the result of the comparison is a
binary array with the same dimensions as the array argument. The comparison is made
between the scalar and every element of the array.

6. When both arguments are arrays, the result of the comparison is a binary array with the
same dimensions as the array arguments. (If both arguments are arrays they must have the
same dimensions.)

4.2.1 Relational operators applied to scalars
Relational operators applied to scalars yield binary scalar results.

Example 4.2.1: Comparison of two scalars

This example compares two scalar values and reports if one is greater than the other.

var

 a, b ;

begin

a := 17 ;

b := 11 ;

if a > b then

 WriteInfo('17 > 11 is TRUE')

else

 WriteInfo('17 > 11 is FALSE') ;

end

Listing 4.2.1 Comparison of two scalars.

The VPascal Primer 41

Example 4.2.2: Comparison of two scalars—alternative method

This example compares two scalar values and reports if one is greater than the other. The
difference between this and the previous example is that the relation can be tested, stored in a
variable, and reused when needed.

var

 a, b ;

 Test ;

begin

a := 17 ;

b := 11 ;

Test := a > b ;

WriteInfo('17 > 11 is ',Test) ; // Output will say TRUE

end

Listing 4.2.2 Comparison of two scalars. The use of a binary variable to save the result of the comparison can often lead

to more elegant and simpler code.

4.2.2 Relational operators applied to images
Relational operators applied to images, or to images and scalars, yield binary arrays.

When comparing two images the images must have exactly the same dimensions. Each binary
pixel in the output array is the result of applying the relational operator to the corresponding
pixels in the arguments.

When comparing an image and a scalar, each binary pixel in the output array is the result of
applying the relational operator to the corresponding pixel in the array argument and the scalar.

The VPascal Primer 42

Example 4.2.3: Comparison of two images

This example compares two images and displays a "map" of where one is greater than the other.

var

 A, B ;

 Test ;

begin

SelectImage('Choose first image',A) ;

SelectImage('Choose second image',B) ;

Test := A > B ;

Show(Test,'AGreaterThanB') ;

end

Listing 4.2.3 Comparison of two images. The output image Test will be 1 wherever A is greater than B and 0 elsewhere.

Example 4.2.4: Comparison of two images

This example compares an image and a scalar, and displays a "map" of where the array is greater
than the scalar.

var

 A ;

 Test ;

begin

SelectImage('Choose an image',A) ;

Test := A > 200 ;

Show(Test,'AGreaterThan200') ;

end

Listing 4.2.4 Comparison of an image and a scalar. The relation is tested between the scalar and every pixel in the array.

The output image Test will be 1 wherever A is greater than 200 and 0 elsewhere.

The VPascal Primer 43

4.3 The Any and All functions
The test performed in a conditional statement must resolve to a binary scalar value. However, a
relational operator applied to array arguments yields a binary array result. Frequently, action
must be taken if all pixel comparisons are true, or if any pixel comparisons are true. These tasks
are handled by the Any and All functions.

4.3.1 The Any function
The Any function takes one binary array as its argument and returns the binary value TRUE if any
of the array's pixels are TRUE.

Example 4.3.1: Stop a division operation if any divisor pixels are zero

This example attempts to divide two images but halts if the divisor contains any zero-valued
pixels. Note that the Any function takes the result of the array-comparison D = 0 and returns
TRUE if at least one pixel is TRUE.

var

 N, D, Q ;

begin

SelectImage('Choose numerator image',N) ;

SelectImage('Choose denominator image',D) ;

if Any(D = 0) then

 Halt('Denominator contains zeros!')

else

 Q := N / D ;

Show(Q) ;

end

Listing 4.3.1 Division of two images. The denominator is tested for zeros before attempting the division.

4.3.2 The All function
The All function takes one binary array as its argument and returns the binary value TRUE if all
of the array's pixels are TRUE.

The VPascal Primer 44

Example 4.3.2: Check that all pixels are above zero

This example checks that all pixels in an image are above zero before proceeding. Note that the
All function takes the result of the array-comparison A > 0 and returns TRUE if all pixels are
TRUE.

var

 A ;

begin

GetActiveImage(A) ;

if not All(D > 0) then

 Halt('Parts of image saturated at ZERO!') ;

end

Listing 4.3.2 Checking if an image is saturated at zero. Note that "not All(A > 0)" is equivalent to "Any(A <= 0)".

4.4 The Find function
The Find function takes a binary array argument and returns the coordinates of all pixels that are
TRUE. This function is useful when trying to locate the positions of pixels that obey a specific
relation. The coordinates are returned in each row of an array.

If the argument is a simple two-dimensional array Find will return a 2 by N array of coordinates.
Each row will contain the x-y coordinates of the TRUE pixels.

If the argument is a three-dimensional array (a sequence) Find will return a 3 by N array of
coordinates. Each row will contain the x-y-z coordinates of the TRUE pixels.

The VPascal Primer 45

Example 4.4.1: Locate saturated pixels in a camera image

This example assumes that a 12-bit camera produces the image. The image data will therefore
saturate at a gray level of 4095. The code outputs the location of all saturated pixels.

var

 A, Coords ;

 n ;

begin

GetActiveImage(A) ;

Coords := Find(A = 4095) ;

for n := 0 to GetYMax(Coords) do

 Writeln('[',Coords[0,n],',',Coords[1,n],']') ;

end

Listing 4.4.1 Locating saturated pixels in an image.

Example 4.4.2: Locate saturated pixels in a camera image—more elegant approach

As in the previous example, it is assumed that a 12-bit camera produces the image. The image
data will therefore saturate at a gray level of 4095. The code outputs the location of all saturated
pixels.

var

 n, A, SatMap, Coords ;

begin

GetActiveImage(A) ;

SatMap := (A = 4095) ; // Show where pixels are maxed out

if Any(SatMap) then

 begin

 Show(SatMap,'Saturation Map') ;

 for n := 0 to GetYMax(Coords) do

 Writeln('[',Coords[0,n],',',Coords[1,n],']') ;

 end ;

end

Listing 4.4.2 Locating saturated pixels in an image by first creating a "saturation map."

The VPascal Primer 46

4.5 Counting pixels
It is easy to count the number of pixels that satisfy a relation because when the pixels in a binary
array are summed together, the result is the number of pixels set to TRUE.

Example 4.5.1: Number of saturated pixels in an image

This example assumes a 12-bit camera produces image data. The image data will therefore
saturate at a gray level of 4095. The code displays the number of saturated pixels in the image.

var

 A ;

 nSaturated ;

begin

GetActiveImage(A) ;

nSaturated:= SumOf(A = 4095) ;

if nSaturated > 0 then

 WriteInfo('There are ',nSaturated,' pixels in the image.') ;

end

Listing 4.5.1 Counting the number of saturated pixels in an image.

Example 4.5.2: Number of saturated pixels in an image—more complex case

This example assumes a 12-bit camera produces image data. The image data will therefore
saturate at a gray level of 4095. If the gain and offset of the analogue to digital converter are not
set correctly then pixels may also saturate at 0. The code displays the number of pixels in the
image saturated at 0 and 4095.

var

 A ;

 nSaturated ;

begin

GetActiveImage(A) ;

nSaturated:= SumOf((A = 4095) or (A = 0)) ;

if nSaturated > 0 then

 WriteInfo('There are ',nSaturated,' pixels in the image.') ;

end

Listing 4.5.2 Counting the number of saturated pixels in an image.

The VPascal Primer 47

5.0 Strings and filenames

5.1 String format
A string is stored internally as an array of characters. Accessing characters in a string follows the
Pascal convention. That is, the characters in a string are indexed from 1 (not 0, as in C).

5.2 String output functions
The easiest way to get simple results from a module is to output data as a string. This can
achieved either by writing to a text window or editor, or by displaying a dialog box.

5.2.1 Write and Writeln functions
The Write and Writeln functions behave just like their traditional Pascal counterparts. Both
routines can write to a default editor, or a user-created editor.

The main difference between the two routines is that Writeln automatically appends a carriage-
return / line-feed pair to the output text. This has the effect of moving the output caret to the
next line of the editor.

Write and Writeln take an arbitrary number of parameters, making it easy to build richly
formatted output.

Writeln may be called without arguments in which case the output caret simply moves to the next
line.

The VPascal Primer 48

Example 5.2.1: Using Write and Writeln

This example shows Write and Writeln outputting both strings and scalars in the same line. Since
no editor has been created, the output goes to the default output window.

var

 A ;

 Mean, Min, Max ;

begin

GetActiveImage(A) ;

Mean := MeanOfAll(A) ; // Average value of image

Min := MinOfAll(A) ; // Minimum value of image

Max := MaxOfAll(A) ; // Maximum value of image

Writeln('The mean value is ',Mean) ;

Write('The extreme values are ') ;

Writeln(Min,' and ',Max) ;

end

Listing 5.2.1 Outputting text and numbers using Write and Writeln.

Example 5.2.2: Outputting image size and type

When Write or Writeln is called with an array argument, the size and type of the array is
displayed. This can be a useful debugging aid when developing modules.

var

 A ;

begin

GetActiveImage(A) ;

Writeln(A) ; // Output is, say, "Array[1035,1013] of word"

end

Listing 5.2.2 Getting array information using Write or Writeln.

The VPascal Primer 49

Example 5.2.3: Displaying a small array as text

Often it is useful to see the pixel values of an image in text format. This example outputs the top-
left 10 by 10 portion of any array.

var

 A ;

 procedure WriteArray(var Data) ;

 var

 x, y ;

 begin

 for y := 0 to 9 do

 begin

 for x := 0 to 9 do

 Write(Data[x,y]:6) ;

 Writeln ;

 end ;

 end ; {WriteArray}

begin

GetActiveImage(A) ;

WriteArray(A) ;

end

Listing 5.2.3 Displaying image pixels in an editor.

5.2.2 WriteInfo and WriteError functions
WriteInfo and WriteError are essentially identical routines: both display an informational
message in a dialog that the user must dismiss by pressing the OK button. The difference
between the two procedures is that they have different icons.

WriteInfo displays an "information icon" to suggest that the content is simply informative.

WriteError displays an "error icon" to suggest that something drastic or fatal has happened.

WriteInfo and WriteError can be called with an arbitrary number of parameters in the same
way as Write and Writeln.

The VPascal Primer 50

Example 5.2.4: Displaying messages with WriteInfo and WriteError

var

 A ;

begin

GetActiveImage(A) ;

GetXYSize(A, xSize, ySize) ;

if not (IsPowerOfTwo(xSize) and IsPowerOfTwo(ySize)) then

 WriteError('Size is not a power of two!') // Problem

else

 begin

 A := fft(A) ;

 WriteInfo('FFT complete') ; // Done

 end ;

end

Listing 5.2.4 Using WriteInfo and WriteError to display information.

5.3 String input functions

5.3.1 GetString function
The GetString function prompts the user to enter a string using a dialog box. It is possible to
determine whether the user pressed the OK or Cancel buttons to close the dialog.

Example 5.3.1 Using GetString with no error checks

This example assumes that a string is always entered in response to the prompt. See example
5.3.2 to see how to respond when the user presses the Cancel button.

begin

GetString('Enter a string', Msg) ;

WriteInfo('You entered the string "', Msg, '"') ;

end

Listing 5.3.1 Using GetString to enter information into a module.

The VPascal Primer 51

Example 5.3.2 Using GetString with an error check

This example does not assume that a string is always entered in response to the prompt.

var

 Code ;

begin

Code := GetString('Enter a string', Msg) ;

if Code = id_OK then

 WriteInfo('You entered the string "', Msg, '"')

else

 WriteError('You cancelled the dialog!') ;

end

Listing 5.3.2 Using GetString robustly to enter information into a module.

5.3.2 SelectString function
The SelectString function allows the user to select from a list of strings. The list is created by
concatenating a number of smaller strings delimited by semicolons.

The VPascal Primer 52

Example 5.3.3 Using SelectString to choose from a list of strings

This example creates a list of options and prompts the user to select one of them.

var

 Index ;

 List ;

 Item ;

begin

List := 'Lowpass;Highpass;Bandpass' ;

Index := SelectString('Select one of these filters:', List, Item) ;

if Index > 0 then

 WriteInfo('You selected the ', Item, ' filter.')

else

 WriteError('You cancelled the dialog!') ;

end

Listing 5.3.3 Using SelectString to choose from a list of alternatives.

5.4 String-number conversions

5.4.1 Converting a number to a string
A number is converted to a string using the Str function. The Str function takes one scalar
argument and returns a string. The argument may be qualified to control the width of the string
holding the number. The syntax of Str is shown in the table below.

Syntax Output Comment

s := Str(123) ; '123'

s := Str(123:6) ; ' 123' Allow 6 spaces in total

s := Str(123.0) ; '123.0000'

s := Str(123.0:8:2) ; ' 123.00' Allow 8 spaces in total with 2 decimal places

Table 5.4.1 Sample syntax for the Str function

The VPascal Primer 53

5.4.2 Converting a string to a number
A string is converted to a number using the Val function. The Val function takes one string
parameter and returns the best scalar compatible with the string. The syntax of Val is shown in
the table below.

Syntax Output

x := Val('123') ; Fixed-point number 123

x := Val('123.456') ; Floating point number 123.456

x := Val('123 456') ; Complex number 123+i456

x := Val('123 456 789') ; 48-bit RGB number (123,456,789)

x := Val('$FF') ; Fixed-point number 255

Table 5.4.2 Sample syntax for the Val function

5.5 Common string operations

5.5.1 Extracting a sub-string
Use ExtractStr to copy a sub-string from a larger string. Note that strings are indexed from 1
(as in Pascal) rather than 0 (as in C). When using ExtractStr specify the starting position in the
main string and the number of characters to copy.

Example 5.5.1: Extracting a sub-string from another string

var

 Main, Sub ;

begin

Main := 'Digital Optics' ;

Sub := ExtractStr(Main, 9, 6) ; // Extract 6 chars starting from char 9

Writeln(Main) ; // 'Digital Optics'

Writeln(Sub) ; // 'Optics'

end

Listing 5.5.1 Extracting a sub-string from another string using ExtractStr.

The VPascal Primer 54

5.5.2 Deleting a sub-string
Use DeleteStr to delete characters from a string. Note that strings are indexed from 1 (as in
Pascal) rather than 0 (as in C). When using DeleteStr specify the starting position in the string
and the number of characters to delete.

Example 5.5.2: Deleting a range of characters from a string

var

 S ;

begin

S := 'Digital Optics' ;

Writeln(S) ; // 'Digital Optics'

DeleteStr(S, 9, 6) ; // Delete 6 chars starting from char 9

Writeln(S) ; // 'Optics'

end

Listing 5.5.2 Deleting a range of characters from another string using DeleteStr.

5.5.3 Inserting a sub-string
Use InsertStr to insert a string into another string. Note that strings are indexed from 1 (as in
Pascal) rather than 0 (as in C). When using InsertStr specify the sub-string to insert, the main
string in which to insert the sub-string, and the starting position in the main string.

Example 5.5.3: Inserting a sub-string into another string

var

 S ;

begin

S := 'Precision Imaging' ;

Writeln(S) ; // 'Precision Imaging'

InsertStr('Digital', S, 11) ; // Insert 'Digital' starting at char 11

Writeln(S) ; // 'Precision Digital Imaging'

end

Listing 5.5.3 Inserting a sub-string into another string using InsertStr.

The VPascal Primer 55

5.5.4 Replacing a sub-string
Use ReplaceStr to replace one or more sub-strings in a string with an alternative sub-string.
ReplaceStr can be made sensitive to case.

Example 5.5.4: Replacing a sub-string with another sub-string

var

 FileName ;

begin

FileName := 'C:\Documents\Images\19990426.tif' ;

Writeln(FileName) ; // 'C:\Documents\Images\19990426.tif'

ReplaceStr(FileName, '2000', '1999', rs_ReplaceAll+rs_IgnoreCase) ;

Writeln(FileName) ; // 'C:\Documents\Images\20000426.tif'

end

Listing 5.5.4 Replacing all occurrences of a sub-string with another sub-string using ReplaceStr.

5.5.5 Joining (concatenating) two strings
Use the + operator to join two or more strings.

Example 5.5.5: Joining strings with the + operator

var

 Path, Dir, Name, Ext ;

begin

Dir := 'C:\Documents\' ;

Name := 'A0001' ;

Ext := '.tif' ;

Path := Dir + Name + Ext ; // 'C:\Documents\A0001.tif'

end

Listing 5.5.5 Using the + operator to join strings.

The VPascal Primer 56

5.5.6 Trimming spaces from a string
It is good practice to remove extraneous spaces from text when the user enters strings. This is
especially true when the string is subsequently converted to a number. Three functions are
available for removing spaces from strings, as shown in the table below.

Function Description

TrimLeft Remove leading spaces from the string

TrimRight Remove trailing spaces from the string

Trim Remove leading and trailing spaces from the string

Table 5.5.1 Functions to trim spaces from a string

Example 5.5.6: Trimming spaces from a string

var

 S ;

begin

S := ' 123 ' ;

Writeln('<',S,'>') ; // < 123 >

Writeln('<',TrimLeft(S),'>') ; // <123 >

Writeln('<',TrimRight(S),'>') ; // < 123>

Writeln('<',Trim(S),'>') ; // <123>

end

Listing 5.5.6 Removing spaces from a string using the trimming functions.

5.5.7 Comparing strings
To perform a case-sensitive comparison of two strings use the CompareStr function or the equals
sign.

To perform a case-insensitive comparison of two strings use the CompareText function

The VPascal Primer 57

Example 5.5.7: Comparing strings

var

 S ;

begin

S := 'Digital Optics' ;

if CompareStr(S, 'digital optics') = 0 then

 Writeln('You should NOT see this message!') ;

if S = 'digital optics' then

 Writeln('Nor should you see this message!') ;

if CompareText(S,'digital optics') = 0 then

 Writeln('You WILL see this message') ;

end

Listing 5.5.7 Comparing strings using case-sensitive and case-insensitive routines.

5.5.8 Parsing a string into sub-strings
There are many applications where a string is the concatenation of several smaller strings. The
smaller strings are called tokens. Special characters, called delimiters, separate the smaller
strings. The act of extracting tokens from the main string is called parsing.

For example, the user may be prompted to enter a coordinate (as a string) in the form "123, 456"
or "123 456". The task of a parser is to extract the tokens 123 and 456 given that the delimiter
characters are a space and / or a comma.

The function StrParse is equipped to parse tokens from a string with any number of delimiter
characters.

The VPascal Primer 58

Example 5.5.8: Extracting pixel coordinates from a string

This example extracts two numbers from a string by parsing the string into separate tokens. The
user may enter the coordinates separated by a space, a comma, or both.

var

 CoordString ;

 x, y ;

 Delimits ;

begin

GetString('Enter the coordinates', CoordString) ; // Prompt for the coords

Delimits := ' ,' ; // Two delimiters: space and comma

Token := StrParse(CoordString, Delimits) ; // Extract first token

x := Val(Token) ;

Token := StrParse(CoordString, Delimits) ; // Extract second token

y := Val(Token) ;

WriteInfo('Coordinates are (', x, ',', y, ')') ;

end

Listing 5.5.8 Extracting integer-valued coordinates using StrParse.

The VPascal Primer 59

Example 5.5.9: Extracting an unknown number of values from a string

This example extracts an unknown number of values from a string. A space, comma, tab, or any
combination may separate the tokens.

var

 String, Token ;

 Delimits ;

 Count ;

begin

GetString('Enter the coordinates', String) ; // Prompt for a string to parse

Delimits := ' ,' + chr(9) ; // chr(9) = tab character

Count := 0 ; // Number of tokens parsed

repeat

 Token := StrParse(String, Delimits) ; // Extract token

 if length(Token) > 0 then

 begin

 Writeln(Token) ; // Output value

 Count := Count + 1 ; // Keep track of number of tokens for later (?)

 end ;

until length(String) = 0 ;

Writeln ;

Writeln(Count, ' values extracted') ;

end

Listing 5.5.9 Extracting an unknown number of tokens from a string using StrParse.

The VPascal Primer 60

5.6 Filenames
A filename consists of a number of different components as shown in Table 5.6.1 below.

Component What it is Example

Drive Disk drive that hosts the file C:

Path List of directories that "point" to the file \Documents\Images\

Name Name of the file Test

Extension Extension that identifies the type of file .tif

Filename Complete file specification C:\Documents\Images\Test.tif

Table 5.6.1 Filename components.

5.6.1 Extracting filename components
A number of routines are provided for dissecting a filename into its components:

Function Purpose

ChangeFileExt Alter the extension of a filename

ExpandFileName Expand a partial file specification into a full specification

ExtractFileDir Extract the directory portion of the filename

ExtractFileDrive Extract the drive portion of the filename

ExtractFileExt Extract the extension portion of the filename

ExtractFileName Extract the name and extension of the filename

ExtractFilePath Extract the path portion of the filename (includes trailing backslash)

Table 5.6.2 Useful filename manipulation functions.

The VPascal Primer 61

Example 5.6.1 Extracting filename components

The example shows how to use the functions listed in Table 5.6.2 to extract various components
of a filename.

var

 FileName ;

 Drive, Dir, Ext, Name, Path ;

begin

FileName := 'C:\Documents\Images\A0001.tif' ;

Writeln(ExtractFileDrive(FileName)) ; // 'C:'

Writeln(ExtractFileDir(FileName)) ; // 'C:Documents\Images'

Writeln(ExtractFileExt(FileName)) ; // '.tif'

Writeln(ExtractFileName(FileName)) ; // 'A0001.tif'

Writeln(ExtractFilePath(FileName)) ; // 'C:Documents\Images\'

end

Listing 5.6.1 Extracting filename components

The VPascal Primer 62

6.0 File handling

6.1 Does a file exist?
When reading information from disk it is a common problem to determine whether a given file
exists. The FileExists function return TRUE if the specified file is found on disk.

Example 6.1.1:

This example determines if a certain image exists, and then reads the image onto the desktop.

begin

if FileExists('C:\Documents\Images\A0001.tif') then

 OpenToDesktop('C:\Documents\Images\A0001.tif') ;

end

Listing 6.1.1 Using FileExists to check for existence of a file.

6.2 Searching a sequence of directories for a file
Often images are stored in a hierarchy of folders organized by experiment or otherwise. To search
a list of directories for a specific file, use the FileSearch function. This function takes a list of
directories, separated by semicolons, and returns the path to the required file, if found.

The VPascal Primer 63

Example 6.2.1: Searching a list of directories

This example scans two directories, C:\Documents\Images\Day1 and
C:\Documents\Images\Day2, for the image A0001.tif. If the image is found, it is displayed on
the desktop.

const

 Path1 = 'C:\Documents\Images\Day1' ;

 Path2 = 'C:\Documents\Images\Day2' ;

var

 List ;

 File ;

begin

List := Path1 + ';' + Path2 ;

File := FileSearch('A0001.tif', List) ;

if length(File) > 0 then

 OpenToDesktop(File) ;

end

Listing 6.2.1 Using FileSearch to scan a list of directories.

6.3 Iterating over a sequence of files
It is possible to iterate over an entire collection of files using the FindFirstFile and
FindNextFile functions. For example, all images from an experiment may be stored in a single
folder or perhaps may be stored using a specific naming scheme, such as A0001.tif, A0002.tif,
etc. In either case it is an easy matter to over all the images in a systematic way.

The VPascal Primer 64

Example 6.3.1: Scanning all files in a specific folder

This example opens all TIFF images found in a specific folder.

var

 Name ;

begin

Name := FindFirstFile('C:\Documents\Images*.tif', fa_Archive) ;

while length(Name) > 0 do

 begin

 OpenToDesktop(Name) ;

 Name := FindNextFile ;

 end ;

end

Listing 6.3.1 Using FindFirstFile / FindNextFile to open all TIFF images in a folder.

Example 6.3.2: Scanning all files with a specific filename signature

This example opens all TIFF images of the form A0001.tif, A0002.tif, etc, found in a specific
folder.

var

 Name ;

begin

Name := FindFirstFile('C:\Documents\Images\A*.tif', fa_Archive) ;

while length(Name) > 0 do

 begin

 OpenToDesktop(Name) ;

 Name := FindNextFile ;

 end ;

end

Listing 6.3.2 Using FindFirstFile / FindNextFile to open TIFF images with the same filename signature.

The VPascal Primer 65

6.4 File-size and disk-size functions
To determine the size of a specific disk, use the DiskSize function.

To determine the free space on a specific disk, use the DiskFree function.

To determine the size of a specific file on disk, use the FileSize function.

6.5 Creating a directory
Create a new folder or directory using the CreateDir procedure.

Example 6.5.1: Create a new directory for storing experimental results

const

 NewFolder = 'C:\Documents\Experiment28' ;

begin

CreateDir(NewFolder) ;

end

Listing 6.5.1 Creating a new folder for experiment files.

6.6 Changing the default directory
Change to a different folder or directory using the SetDir procedure.

Example 6.6.1: Create a new directory for storing experimental results then make it the default
directory

const

 NewFolder = 'C:\Documents\Experiment28' ;

begin

CreateDir(NewFolder) ;

SetDir(NewFolder) ;

end

Listing 6.6.1 Creating a new folder and making it the default folder.

The VPascal Primer 66

7.0 Menus and toolbars

7.1 Running a module from a menu
A module can be activated from a menu by inserting the reserved word menu at the beginning of a
module.

Example 7.1.1: A menu-activated module

This example activates a module when 'Invert the Image' is selected from the User menu.

menu 'Invert the Image' ;

var

 A ;

begin

GetActiveImage(A) ;

if IsImage(A) then

 A := not A ;

end

Listing 7.1.1 Menu-activation of a module

7.2 Running a procedure from a menu
An individual procedure in a module can be executed by associating the menu reserved word with
each procedure that requires it.

In order that a procedure is able to launch from a menu click, it cannot be declared with
parameters.

Functions cannot be directly activated from a menu.

The VPascal Primer 67

Example 7.2.1: Activating individual procedures from a menu

This example activates each procedure when the appropriate entry is selected from the main User
menu. The menu entries will appear in the User menu in the order they are declared in the
module.

 procedure Invert ; menu '-Invert the Image' ;

 var

 A ;

 begin

 GetActiveImage(A) ;

 A := not A ;

 end ; {Invert}

 procedure ConvertToByte ; menu 'Convert to byte' ;

 var

 A ;

 begin

 GetActiveImage(A) ;

 if TypeOf(A) <> typ_Byte then

 ConvertType(A, typ_Byte) ;

 end ; {ConvertToByte}

begin

end

Listing 7.2.1 Menu-activation of procedures.

7.3 Separators and accelerators
When several procedures or modules add entries to the User menu it is often a good idea to group
the available options functionally, separated by horizontal lines. These lines are called separators.

To add a separator, make sure the first character of the menu text is '-'. For example, '-Invert the
Image' will place a separator before the menu text 'Invert the Image'.

The VPascal Primer 68

Accelerators are the underlined characters that appear in a menu. When the menu is displayed,
the accelerator character can be pressed on the keyboard rather than having to move the mouse.

To specify a character as the accelerator character, place an ampersand immediately before the
character. For example, 'In&vert the Image' will be displayed as 'Invert the Image'.

7.4 Running a module from a toolbar button
Running a module from a button click is just as easy as adding a menu entry. Simply add the
reserved word button at the beginning of a module, followed by the button icon identifier. V++
comes with hundreds of predefined button images. Consult the help file for a complete list.

Example 7.4.1: A button-activated module

This example activates a module when the 'Hand' button is pressed on the toolbar.

button btn_Hand ;

var

 A ;

begin

GetActiveImage(A) ;

if IsImage(A) then

 A := not A ;

end

Listing 7.4.1 Button-activation of a module

The VPascal Primer 69

Example 7.4.2: A button-activated module with help string

This example activates a module when the 'Hand' button is pressed on the toolbar. It also adds a
useful help string that appears when the mouse hovers over the button for a moment. This assists
the user in determining the function of a particular button.

button btn_Hand, 'Invert the image' ;

var

 A ;

begin

GetActiveImage(A) ;

if IsImage(A) then

 A := not A ;

end

Listing 7.4.2 Button-activation of a module with help string

7.5 Running a procedure from a toolbar button
An individual procedure in a module can be executed by associating the button reserved word
with each procedure that requires it.

In order that a procedure is able to launch from a button click, it cannot be declared with
parameters.

Functions cannot be directly activated from a button.

The VPascal Primer 70

Example 7.5.1: Activating individual procedures from a button

This example activates each procedure when the appropriate button is pressed. The buttons will
appear on a toolbar in the order they are declared in the module.

 procedure Invert ; button btn_I, 'Invert the Image' ;

 var

 A ;

 begin

 GetActiveImage(A) ;

 A := not A ;

 end ; {Invert}

 procedure ConvertToByte ; button btn_B, 'Convert to byte' ;

 var

 A ;

 begin

 GetActiveImage(A) ;

 if TypeOf(A) <> typ_Byte then

 ConvertType(A, typ_Byte) ;

 end ; {ConvertToByte}

begin

end

Listing 7.5.1 Button-activation of procedures.

7.6 Naming a toolbar
All the buttons defined in a specific module appear on the same toolbar. A module's toolbar can be
given a useful name using the toolbar reserved word. Only one toolbar reserved word is
permitted module.

The VPascal Primer 71

Example 7.6.1: Naming a toolbar for a module

This example has two button-activated procedures. Both buttons appear on the toolbar called
'Custom Tools'.

toolbar 'Custom Tools' ;

 procedure Invert ; button btn_I, 'Invert the Image' ;

 var

 A ;

 begin

 GetActiveImage(A) ;

 A := not A ;

 end ; {Invert}

 procedure ConvertToByte ; button btn_B, 'Convert to byte' ;

 var

 A ;

 begin

 GetActiveImage(A) ;

 if TypeOf(A) <> typ_Byte then

 ConvertType(A, typ_Byte) ;

 end ; {ConvertToByte}

begin

end

Listing 7.6.1 Specifying the name of a toolbar.

The VPascal Primer 72

8.0 Running code at start-up and at shutdown

8.1 Making a module ready to run at start-up
Having modules pre-compiled and ready to run can be very productive, especially when there are
a number of novice users of the system. To automatically load and compile a module at startup,
follow the steps below.

Step 1
Compile the module and verify that it is in a compiled (ready to run)
state using the Module List dialog. (To launch the Module List dialog,
select Tools | Module List on the main menu.)

Step 2 On the Module List dialog press the Startup button.

Step 3 Select the "Load and compile this module at startup" option and press
the OK button.

Step 4 The next time V++ starts check the Module List dialog and you will see
the module listed as ready to run.

8.2 Running a module at start-up
Automatically running a module at startup is an efficient way to ensure that an experimental
system always starts from a known state. To automatically load and run a module at startup,
follow the steps below.

Step 1
Compile the module and verify that it is in a compiled (ready to run)
state using the Module List dialog. (To launch the Module List dialog,
select Tools | Module List on the main menu.)

Step 2 On the Module List dialog press the Startup button.

Step 3 Select the "Load and run this module at startup" option and press the
OK button.

Step 4 The next time V++ starts the module will automatically load and run.

The VPascal Primer 73

8.3 Running a procedure at shutdown
It is generally considered good practice to "tidy up" at the end of an automated sequence of
operations. For example, computer controlled equipment such as a stage may need to be restored
to its "home" position. This action can take place automatically when V++ shuts down by
nominating a module, or a specific procedure in a module, as the "shutdown code."

A procedure or module is identified as shutdown code by using the shutdown reserved word.

Each module is allowed only one procedure with the reserved word shutdown.

Shutdown procedures cannot accept parameters.

Example 8.3.1: Executing a shutdown procedure when V++ terminates

This example uses a shutdown procedure to close a camera at shutdown. Note that the module
could have many user-defined procedures and functions, but only the procedure tagged as
shutdown will be automatically executed when V++ terminates.

const

 CamName = 'PXL37' ;

 procedure Finished ; shutdown ;

 begin

 pvcCloseCamera(CamName) ;

 end ; {Finished}

begin

pvcOpenCamera(CamName) ;

{Main body of code here performs various image

 processing operations.}

end

Listing 8.3.1 Running a shutdown procedure.

The VPascal Primer 74

9.0 Initialization files

9.1 What are initialization files?
Initialization, or INI, files are simple text files used to store information used by a program.
Typically, an application writes information to an INI file when it terminates so that when
restarted it can restore certain conditions in the program.*

An INI file is divided into a number of sections. Each section has a heading or title, and is followed
by a series of lines with the general format keyword=value. An INI file will therefore look
something like this:

General Format Example

[Section1]

Keyword1=Value1

Keyword2=Value2

...

KeywordN=ValueN

[Section2]

Keyword1=Value1

Keyword2=Value2

...

KeywordN=ValueN

 [Camera]

ExposureTime=155

FrameCount=3

[Database]

ImagePath=C:\Document\Images

ResultsPath=C:\Documents\Data

Table 9.1.1 INI file layout

A program can arrange its content logically into sections, and use sensible keywords to save
important information.

9.2 Using a private initialization file
A private INI file refers to an INI file created by the program. A private INI file can have any
name, but it is usual to have an extension .INI.

To write values to a private INI file use the WritePrivateINIString.

To read values from a private INI file use the ReadPrivateINIString function.

* Note that most modern applications, including V++, store private initialization data in the Windows Registry database.

However, INI files remain a useful means of storing application or module data in a human readable form. The V++ INI
file is retained for convenience and backwards compatibility only.

The VPascal Primer 75

Example 9.1.1: Writing to a private INI file

This example writes a number of parameters to a private INI file.

const

 IniFile = 'C:\Documents\Experiment57\Setup.ini' ;

 Section = 'Last Image' ;

var

 Image ;

 xSize, ySize ;

begin

GetActiveImage(Image) ;

GetXYSize(Image, xSize, ySize) ;

WritePrivateINIString(IniFile, Section, 'Name', GetName(Image)) ;

WritePrivateINIString(IniFile, Section, 'Width', xSize) ;

WritePrivateINIString(IniFile, Section, 'Height', ySize) ;

end

Listing 9.1.1 Saving information to a private INI file.

Example 9.1.2: Reading from a private INI file

This example reads a number of parameters from a private INI file.

const

 IniFile = 'C:\Documents\Experiment57\Setup.ini' ;

 Section = 'Camera' ;

var

 ExpTime, Name ;

begin

Name := ReadPrivateINIString(IniFile, Section, 'CameraName') ;

ExpTime := Val(ReadPrivateINIString(IniFile, Section, 'Exposure')) ;

pvcOpenCamera(Name) ;

pvcSetExpTime(ExpTime) ;

end

Listing 9.1.2 Reading information from a private INI file.

The VPascal Primer 76

Example 9.1.3: Reading from a private INI file with defaults

This example reads a number of parameters from a private INI file. It uses the default feature of
ReadPrivateINIString so that if a keyword is absent from the INI file, a program-supplied
alternative is used instead.

const

 IniFile = 'C:\Documents\Experiment57\Setup.ini' ;

 Section = 'Camera' ;

var

 ExpTime, Name ;

begin

Name := ReadPrivateINIString(IniFile, Section, 'CameraName') ;

ExpTime := Val(ReadPrivateINIString(IniFile, Section, 'Exposure', '100')) ;

pvcOpenCamera(Name) ;

pvcSetExpTime(ExpTime) ;

end

Listing 9.1.3 Reading information from a private INI file with defaults. Note that if the Exposure keyword is absent, a

default value of 100 is used.

9.3 Using the V++ initialization file
The V++ INI file behaves just like a private initialization file, except you do not need to refer to it
by name, nor do you need to know where it is located.

The V++ INI file is accessed using the routines WriteINIString and ReadINIString. These
routines are identical to their private counterparts, except they do not require a path parameter.

Should data be stored in the V++ INI file or a private INI file? Strictly speaking it doesn't matter,
but good practice suggests that each major experimental setup should have its own private INI
file. In order that modules do not need to be hard-coded with the location of the private INI file, it
is a good idea to save the path to the private INI file in the V++ INI file. That way, a module first
interrogates the V++ INI file to obtain the location of the private INI file, then reads / writes data
from / to the private INI file.

The VPascal Primer 77

10.0 Plotting

10.1 Creating a plot window

Example 10.1.1: Creating a named plot window

var

 P ;

begin

P := CreatePlot('My Plot') ;

end

Listing 10.1.1 Creating a named plot window.

Example 10.1.2: Creating a named plot window with specified position and size

var

 P ;

begin

P := CreatePlot('My Plot', 20, 20, 300, 200) ;

end

Listing 10.1.2 Initializing the size and location of a plot window.

The VPascal Primer 78

10.2 Simple plots
The simplest form of plot is where a one-dimensional array of number needs to be displayed in
graphical form. This is very easy to do with the Plot procedure.

Example 10.2.1: A simple plot

var

 P ;

 Data ;

begin

P := CreatePlot('Simple Plot') ;

Data := Sin(MakeLinear(-pi, +pi, 500)) ; // Create a sine wave

Plot(P, Data) ;

end

Listing 10.2.1 A simple plot using the Plot procedure.

Example 10.2.2: Plotting the mean of each frame in sequence

var

 P ;

 Image ;

 Means ;

begin

GetActiveImage(Image) ;

Means := MeanOfFrames(Image) ;

P := CreatePlot('Sequence Means') ;

Plot(P, Means) ;

end

Listing 10.2.2 Displaying useful information in a plot.

The VPascal Primer 79

10.3 Adding titles and captions
A plot can be annotated with a range of labels as shown in Table 10.3.1 below.

Function Action

SetTitle Display a title at the top of a plot window

SetXLabel Display a label below the x-axis of a plot window

SetYLabel Display a label to the left of the y-axis of a plot window

Table 10.3.1 Annotating a plot with useful information

In addition to setting the text to be displayed, the title and axis labels can be altered by changing
the font, font size and font color.

Example 10.3.1: Plotting the mean of each frame in sequence with useful annotation

var

 P ;

 Image ;

 Means ;

begin

GetActiveImage(Image) ;

Means := MeanOfFrames(Image) ;

P := CreatePlot('Sequence Means') ;

Plot(P, Means) ;

SetTitle(P, 'Mean of Sequence Frames') ;

SetXLabel(P, 'Frame Number') ;

SetYLabel(P, 'Mean Value') ;

end

Listing 10.3.1 Annotating a plot window.

The VPascal Primer 80

10.4 Plotting X and Y data
It is often required to plot one set of data versus another set. This is accomplished using the
PlotXY procedure.

Example 10.4.1: A simple XY plot

var

 P ;

 XData, yData ;

begin

P := CreatePlot('Simple Plot') ;

xData := MakeLinear(-pi, +pi, 500) ; // Create x data

yData := Sin(10 * xData) ; // Create y data

PlotXY(P, xData, yData) ;

end

Listing 10.4.1 A simple XY plot using the PlotXY procedure.

The VPascal Primer 81

11.0 Controlling a PVCAM camera

11.1 Opening and closing a camera
Before a PVCAM camera can be used it must be opened. A camera may be opened in the GUI or
from a module. If a camera is opened from within the GUI it does not need to be subsequently
opened from a module. In other words, once it's open, it's open.

Sometimes it may be useful to close a camera, making it unavailable for operation. However,
most times it unnecessary to explicitly close a camera because an open camera is automatically
closed when V++ shuts down. (Furthermore, any cameras that are open just prior to shutdown
will be opened automatically when V++ restarts.)

Example 11.1.1: Opening a camera

This example opens a camera with a known name.

begin

pvcOpenCamera('SenSys1') ;

end

Listing 11.1.1 Opening a camera.

Example 11.1.2: Closing a camera

This example closes a camera with a known name.

begin

pvcCloseCamera('SenSys1') ;

end

Listing 11.1.2 Closing a camera.

The VPascal Primer 82

Example 11.1.3: Opening a camera without knowing its name

This example obtains a list of all cameras installed in the system and then prompts the user to
open a specific camera.

var

 NameList ;

 AName ;

begin

NameList := pvcGetCameraList ;

SelectString('Choose a camera', NameList, AName) ;

pvcOpenCamera(AName) ;

end

Listing 11.1.3 Opening a camera based on the list of installed cameras.

11.2 Acquiring and displaying an image
Single-frame images are acquired using the pvcCapture function while sequences are acquired
using the pvcSequence function.

Example 11.2.1: Acquiring a single frame

This example acquires a single frame from the camera and displays the result. It assumes that the
camera is already open for operation.

var

 Image ;

begin

pvcSetExpTime(200) ; // Set the exposure time

Image := pvcCapture(0, 0, 255, 255) ; // Capture top-left 256-square image

Show(Image) ;

end

Listing 11.2.1 Capturing a single frame.

The VPascal Primer 83

Example 11.2.2: Acquiring the full CCD

This example acquires a single full frame from the camera and displays the result. It assumes that
the camera is already open for operation.

var

 Image ;

 xSize, ySize ;

begin

pvcSetExpTime(200) ; // Set the exposure time

pvcGetCCDSize(xSize, ySize) ;

Image := pvcCapture(0, 0, xSize-1, ySize-1) ; // Capture full CCD

Show(Image,'CCDImage') ;

end

Listing 11.2.2 Capturing a full CCD image.

Example 11.2.3: Acquiring a sequence of frame

This example acquires a series of frames from the camera and displays the result. It assumes that
the camera is already open for operation.

var

 Image ;

begin

pvcSetExpTime(200) ; // Set the exposure time

Image := pvcSequence(10, 0, 0, 255, 255) ; // Capture 10 frames

Show(Image) ;

end

Listing 11.2.3 Capturing a series of frames.

The VPascal Primer 84

11.3 Binning the CCD
Binning improves the signal to noise ratio of an image by combining adjacent pixels on the CCD
into a smaller number of super-pixels. Appending two optional parameters to the pvcCapture and
pvcSequence functions controls the extent of binning.

Example 11.3.1: Acquiring the full CCD with binning

This example acquires a single full frame from the camera with two pixels binned in each
direction. It assumes that the camera is already open for operation.

var

 Image ;

 xSize, ySize ;

begin

pvcSetExpTime(200) ; // Set the exposure time

pvcGetCCDSize(xSize, ySize) ;

Image := pvcCapture(0, 0, xSize-1, ySize-1, 2, 2) ; // 2x2 binning

Show(Image,'BinnedImage') ;

end

Listing 11.3.1 Capturing a full CCD image with two-by-two binning.

Example 11.3.2: Acquiring a sequence of the CCD with binning

This example acquires a sequence of full frames from the camera with two pixels binned in each
direction. It assumes that the camera is already open for operation.

var

 Image ;

 xSize, ySize ;

begin

pvcGetCCDSize(xSize, ySize) ;

Image := pvcSequence(10, 0, 0, xSize-1, ySize-1, 2, 2) ; // 2x2 binning

Show(Image,'BinnedImage') ;

end

Listing 11.3.2 Capturing a sequence of the full CCD with two-by-two binning.

The VPascal Primer 85

11.5 Detecting and handling camera errors

11.5.1 Detecting a camera error
Camera errors are most easily detected using the pvcError function. This function returns a
Boolean value of TRUE if an error has occurred, otherwise FALSE.

Calling pvcError does not reset the error reporting machinery inside PVCAM, but another error-
related function does. See pvcErrorCode below.

Example 11.5.1: Detecting a PVCAM error

This example attempts to open a camera and acquire an image. If any form of error occurs a
message is displayed. Note that this example does not report the actual error condition.

var

 Image ;

begin

pvcOpenCamera('SenSys1') ;

if pvcError then

 Halt('Error occurred while opening camera!') ;

Image := pvcCapture(0, 0, 499, 499) ;

Show(Image) ;

end

Listing 11.5.1 Detecting a PVCAM error while opening a camera.

11.5.2 Determining the error code
All PVCAM errors have a specific error code associated with them. The error code can be
determined by calling the pvcErrorCode function. This function returns an integer scalar value
equal to the error code.

A call to pvcErrorCode resets the error report mechanism in PVCAM so that subsequent calls to
pvcErrorCode do not report false errors. The examples below demonstrate how to correctly
handle this behavior.

The VPascal Primer 86

Example 11.5.2: Displaying a PVCAM error code

This example attempts to open a camera and acquire an image. If an error occurs the error code
is displayed. Note that the error condition is first detected by pvcError.

var

 Image ;

begin

pvcOpenCamera('SenSys1') ;

if pvcError then

 Halt('Error opening camera. Code = ', pvcErrorCode) ;

Image := pvcCapture(0, 0, 499, 499) ;

Show(Image) ;

end

Listing 11.5.2 Detecting and displaying a PVCAM error code while opening a camera.

Example 11.5.3: Displaying a PVCAM error code without first using pvcError

This example attempts to open a camera and acquire an image. If an error occurs the error code
is displayed. Since the error status is reset immediately after a call to pvcErrorCode, the
prospective error must first be saved in a variable. If the code is non-zero (indicating a problem)
the error is displayed.

var

 Image ;

 Code ;

begin

pvcOpenCamera('SenSys1') ;

Code := pvcErrorCode ;

if Code <> 0 then

 Halt('Error opening camera. Code = ', Code) ;

Image := pvcCapture(0, 0, 499, 499) ;

Show(Image) ;

end

Listing 11.5.3 Detecting and displaying a PVCAM error code while opening a camera, but without using pvcError.

The VPascal Primer 87

11.5.3 Displaying a useful error message
Error codes are useful programmatically, but a camera user prefers to see a text message. The
pvcErrorMsg function takes an integer parameter (equal to the error code) and returns an
informative text message.

Example 11.5.4: Displaying a PVCAM error message

This example attempts to open a camera and acquire an image. If an error occurs an error
message is displayed.

var

 Image ;

begin

pvcOpenCamera('SenSys1') ;

if pvcError then

 Halt('Error: ',pvcErrorMsg(pvcErrorCode)) ;

Image := pvcCapture(0, 0, 499, 499) ;

Show(Image) ;

end

Listing 11.5.4 Detecting an error and displaying an error message while opening a camera.

The VPascal Primer 88

12.0 Dynamic Data Exchange
Dynamic Data Exchange, or DDE, allows Windows programs to communicate with each other and
share live data. If you need to integrate image processing functions or camera control into an
experimental setup that involves other software products then you may need to use DDE.

In addition to transferring images and modules from one program to another, you can call VPascal
procedures from a client program. For example, you can create buttons in a Microsoft Excel
spreadsheet that trigger procedures in a VPascal module. Likewise, module variables can be
shared so that the client can examine them at any time.

Alternatively, your VPascal module can act as a client to Excel and issue commands that cause
operations to take place on the spreadsheet.

In a typical DDE exchange, one application requests data from another. The application servicing
requests for data is called the server. The application issuing requests or controlling the server is
called the client. V++ can function as both a server and a client. In the language of DDE a
conversation is established between two applications and a transaction occurs between the client
and the server. This terminology is summarized in Table 12.0.1.

Term Explanation

Conversation The DDE channel between two applications

Transaction A specific request made during a conversation

Client An application that requests and receives data

Server An application that provides data to clients

Table 12.0.1 DDE terminology

Three names are used to uniquely define any specific piece of data that the server can provide, as
shown in Table 12.0.2.

Name Explanation

Service The name used to refer to a particular server, like V++

Topic The name of a broad type of data offered by the server

Item The name of a specific piece of data under a topic

Table 12.0.2 Transaction terminology

For more information about DDE fundamentals, refer to the V++ on-line help.

The VPascal Primer 89

12.1 Sending data to applications via DDE
When VPascal sends data to another application it is acting as the client and the other application
is the server. The steps involved in controlling a DDE server from within VPascal are summarized
in Table 12.1.1.

 Step Explanation Functions

1 Initiate the conversation Make contact with a server to establish a

conversation. The conversation refers to a

particular service and topic, and is identified

by a handle. The client may maintain several

conversations simultaneously.

DdeInitiate

2 Transact with the server After a conversation is established, the client

may: send data to the server, request data

from the server, or execute commands on the

server.

DdePoke

DdeRequest

DdeExecute

3 Finish the conversation Terminate a conversation using the

appropriate conversation handle.

DdeTerminate

Table 12.1.1 Steps involved in controlling a DDE server

12.2 Exchanging data with Excel via DDE
Excel is a powerful adjunct to V++. This section shows a number of examples of how to control
the Excel DDE server using a VPascal client.

Example 12.2.1: Initiating and terminating a conversation with Excel

This example opens a conversation with Excel on the topic of a specific worksheet. It assumes
that Excel is already running.

var

 Ch ;

begin

Ch := DdeInitiate('Excel', 'Sheet1') ; // Ch = channel number

{Perform useful client-server actions here}

DdeTerminate(Ch) ;

end

Listing 12.2.1 The basics of all client modules: initiating and terminating a conversation.

The VPascal Primer 90

Example 12.2.2: Auto-running Excel if necessary

This example attempts to open a conversation with Excel. If the client cannot connect to Excel, it
attempts to execute the Excel program and reconnect the conversation. Note that you may need
to spell out the full directory path to the Excel executable file (this is normally something like
"C:\Program Files\Microsoft Office\Office\Excel.exe").

var

 Ch ;

begin

Ch := DdeInitiate('Excel', 'Sheet1') ; // Ch = channel number

if Ch = 0 then

 begin

 Execute('Excel.exe') ; // Include path if necessary

 Ch := DdeInitiate('Excel', 'Sheet1') ;

 if Ch = 0 then Halt('Cannot connect to Excel') ;

 end ;

{Perform useful client-server actions here}

DdeTerminate(Ch) ;

end

Listing 12.2.2 Testing for a valid conversation handle and starting Excel if possible.

Example 12.2.3: Poking data into the current Excel cell

This example pokes a number into the current cell in Excel. The current cell is addressed as 'RC'.

var

 Ch ;

begin

Ch := DdeInitiate('Excel', 'Sheet1') ;

DdePoke(Ch, 'RC', 123.456) ; // Could also use a variable instead of 123.456

DdeTerminate(Ch) ;

end

Listing 12.2.3 Sending data to the current Excel cell by poking.

The VPascal Primer 91

Example 12.2.4: Poking data into specific Excel cells

This example pokes numbers and text into specific cells in Excel using absolute addressing. In the
example, 'R2C1' (row 2, column 1) refers to cell A2. Similarly, 'R2C2' refers to cell B2.

var

 Ch ;

 s, x ;

begin

Ch := DdeInitiate('Excel', 'Sheet1') ;

x := 123 ;

s := 'Text' ;

DdePoke(Ch, 'R2C1', x) ; // Put 123 into A2

DdePoke(Ch, 'R2C2', s) ; // Put 'Text' into B2

DdeTerminate(Ch) ;

end

Listing 12.2.4 Sending data to specific Excel cells by poking to absolute addresses.

Example 12.2.5: Retrieving data from a specific Excel cell

This example requests the values of a cell in an Excel spreadsheet using absolute addressing. In
the example, 'R2C1' (row 2, column 1) refers to cell A2. The DdeRequest function returns a string
unless the optional Format parameter is specified.

var

 Ch ;

begin

Ch := DdeInitiate('Excel', 'Sheet1') ;

WriteInfo('Cell A2 contains: ',DdeRequest(Ch, 'R2C1')) ;

DdeTerminate(Ch) ;

end

Listing 12.2.5 Retrieving data from a specific Excel cell

The VPascal Primer 92

Example 12.2.6: Executing commands in Excel

This example executes a macro in Excel to select a range of cells, and then modifies the
appearance of those cells.

var

 Ch ;

 s, x ;

begin

Ch := DdeInitiate('Excel', 'Sheet1') ;

x := 123 ;

s := 'Text' ;

DdeExecute(Ch,'[select("R5C2:R5C2")]') ; // Select cell B5

DdeExecute(Ch,'[format.font(,,,true)]') ; // Italicise cell

DdeExecute(Ch,'[select("R5C2:R6C4")]') ; // Select cell range B5:D6

DdeExecute(Ch,'[alignment(3,false,3,0)]') ; // Center justify cells

DdeTerminate(Ch) ;

end

Listing 12.2.6 Executing Excel macros using DdeExecute.

12.3 Controlling V++ with DDE
Other applications can control V++ via the V++ DDE server. For example, a Visual Basic for
Applications program (as found in the Microsoft Office suite of products) can get access to VPascal
scalars, strings and images, as well as execute procedures and modules. The DDE topics relevant
to VPascal are shown in Table 12.3.1. Note: the DDE service name is "Vpp".

Topic Explanation

Var Access to VPascal variables exposed via a share name

Proc Access to executable modules and procedures via a share name

Table 12.3.1 DDE server topics relevant to VPascal

The VPascal Primer 93

12.3.1 Var Topic
The Var topic allows DDE clients access to a module's shared variables.

A module variable is shared using the reserved word dde.

Only global variables can be shared via DDE.

External applications or other VPascal modules can both link to shared variables (see 12.4).

Example 12.3.1: Sharing variables via DDE

This example demonstrates how to share global variables via DDE. The variable A is shared using
the DDE share name ActiveImage and the variable N is shared via the DDE share name
ObjectCount. Note that DDE share names must be unique across all modules in V++. Other
applications and modules can obtain access to variables A and N using the topic Var, and Item
names ActiveImage and ObjectCount, respectively.

var

 A dde 'ActiveImage' ;

 N dde 'ObjectCount' ;

begin

end

Listing 12.3.1 Sharing global variables via DDE.

An application may have a warm or hot link to the shared variables. In such cases, whenever the
variable is changed (say, during the normal course of a module's execution) the change is
reflected immediately in the client application.

The VPascal Primer 94

Example 12.3.2: Accessing a variable from Visual Basic

This example demonstrates how a Visual Basic program could monitor the value of a shared
variable.

var

 Image ;

 Mean dde 'Average' ;

begin

GetActiveImage(Image) ;

Mean := MeanOf(Image) ; // Assignment will cause all links to update

end

Listing 12.3.2 Sharing the mean value of an image via DDE.

A connection to Visual Basic could proceed as follows. Add a text-box control (referred to as Text1
in the example code below) to the Visual Basic form. Ensure that the appropriate VPascal module
is running and create a hot link to the Average variable with the following code:

Text1.LinkMode = 0

Text1.LinkTopic = "Vpp|Var"

Text1.LinkItem = "Average"

Text1.LinkMode = 1

Visual Basic code for Listing 12.3.2

An up-to-date value for the Average variable will now be visible in the text-box control.

The VPascal Primer 95

Example 12.3.3: Poking a value into a VPascal shared variable

This example shows how to poke a value into a module variable that has been shared via DDE.

var

 Image ;

 Name dde 'Title' ;

 Mean dde 'Average' ;

begin

GetImage(Name, Image) ; // Use the name poked into Title

Mean := MeanOf(Image) ; // Report mean value in Average

end

Listing 12.3.3 Poking values into a shared variable.

The Visual Basic code (taken from Excel) required to poke a new value into the share Title is
shown below.

Channel = Application.DDEInitiate("Vpp", "Var")

Application.DDEPoke Channel, "Title", "A0001"

Application.DDETerminate Channel

Visual Basic code for Listing 12.3.3

12.3.2 Proc Topic
The Proc topic allows DDE clients access to a module's shared procedures.

A procedure is shared using the reserved word dde.

Only procedures without parameters can be shared via DDE.

External applications or other VPascal modules can both link to shared procedures (see 12.4).

Example 12.3.4: Sharing procedures via DDE

This example demonstrates how to share VPascal procedures via DDE. The procedure Hello is
shared using the DDE share name Hello. Note that DDE share names must be unique across all
modules in V++.

Clients can execute the procedure Hello using the topic Proc and the Item name Hello. A client
may be an external application or another module running in V++ (see 12.4).

The VPascal Primer 96

procedure Hello ; dde 'Hello' ;

begin

WriteInfo('Hello there!') ;

end;

begin

// the main part of the server module

end

Listing 12.3.4 Sharing a procedure via DDE.

By performing a DDE execute transaction an external application or any other VPascal module can
trigger actions to be performed by the server module. Visual Basic code (taken from Excel)
required execute the shared procedure Hello is shown below.

Channel = Application.DDEInitiate("Vpp", "Proc")

Application.DDEExecute Channel, "Hello"

Application.DDETerminate Channel

Visual Basic code for Listing 12.3.4

12.4 Communication between VPascal modules
When a VPascal module initiates a communication with the V++ server itself the conversation is
called a self-connection. This proceeds exactly like any other DDE conversation except that the
client and server both reside in V++.

This means that you can write one module to act as a server and others to act as clients. In fact,
DDE is the preferred way for VPascal modules to communicate with each other. It enables you to
put all the complicated code, say for controlling some lab equipment, into a single module and
then write various simple modules that call the server, in this case to get access to the hardware.

The client and server modules follow exactly the same pattern as if they were intended for
communicating with external programs. Using DDE to communicate with another module is no
different to communicating with another application.

Further, a client module can access all the topics and commands available from the V++ DDE
server. For example, one module can load, compile and run another module using DDE execute
commands under the V++ System topic.

The VPascal Primer 97

Example 12.4.1: DDE self-connection

This example shows how a module can self-connect to V++ and find out the full version number
and the security key serial number. Note the use of a semi-colon in the WriteInfo parameters to
indicate a line break.

var

 Ch ;

 Vn,Sn ;

begin

Ch := DdeInitiate('Vpp','System') ;

Vn := DdeRequest(Ch,'BuildNumber') ;

Sn := DdeRequest(Ch,'SerialNumber') ;

WriteInfo('V++ Version ',Vn,';Security key: ',Sn) ;

DdeTerminate(Ch) ;

end

Listing 12.4.1 DDE self-connection example

Example 12.4.2: Simple DDE server module

The following module shares one variable and one procedure. A client module can read and write
the value of the shared variable Count and call the ShowCount shared procedure. An example
client module is shown in Listing 12.4.3 below.

Program Server ;

var

 Count dde 'Count' ;

procedure ShowCount ; dde 'ShowCount' ;

begin

WriteInfo('The current count is: ',Count) ;

end;

begin

Count := 123 ; // Set initial value of Count

end

Listing 12.4.2 Simple DDE server module

The VPascal Primer 98

Example 12.4.3: Simple DDE client module

The client module shown here creates a couple of V++ self-connections (one for variables and one
for procedures) and illustrates request, poke and execute transactions. The server is assumed to
be the example shown in Listing 12.4.2 above.

Program Client ;

var

 vChannel ;

 pChannel ;

 Data ;

begin

{ start two conversations }

vChannel := DdeInitiate('Vpp','Var') ;

pChannel := DdeInitiate('Vpp','Proc') ;

{ request the variable value }

Data := DdeRequest(vChannel,'Count',fmt_Number) ;

WriteInfo('Received the number: ',Data) ;

{ run the shared procedure }

DdePoke(vChannel,'Count',Data + 1) ; // increment Count and send it back

DdeExecute(pChannel,'ShowCount') ;

{ end the conversations }

DdeTerminate(vChannel) ;

DdeTerminate(pChannel) ;

end

Listing 12.4.3 Simple DDE client module

The VPascal Primer 99

12.5 Remote communication with Network DDE
DDE conversations most often take place between two applications on the same computer.
Network DDE allows conversations to take place across a network, between applications that are
running on different computers. Network DDE is independent of the actual network connections
making up a Microsoft Windows network and can even work across wide area networks. To get a
Network DDE conversation going follow the steps described below.

Step 1: Define a DDE share

Create a DDE share on the computer that will be running the DDE server. This is usually done with
the DDE Share Manager program (DDESHARE.EXE) from the Windows Resource Kit but can also
be done programmatically using the Windows NDDEAPI.DLL library.

To define a DDE share simply choose a share name and use the DDE Share manager to enter the
service and topic names to which it should provide access. The DDE share name refers to one
service / topic pair so to access multiple topics a share must be created for each. You can restrict
conversations to particular items or require passwords for access to the server. The share name
can be anything at all and does not have to be the same as the service or topic names. By
convention, the share name normally ends with "$".

IMPORTANT NOTE: Although the terminology is similar, DDE network shares are not the same
thing as VPascal shared variables and procedures.

Step 2: Run NETDDE on both machines

In the Windows directory you will find a program called NETDDE.EXE which loads the Network
DDE layer of the operating system. This program must be run on both the server and client
machines before trying to make a network connection. This step is required for Windows 95 and
98 only - it is not necessary for Windows NT.

You may find it useful to have NETDDE automatically loaded – this can be done by copying it to
the Windows StartUp folder.

Step 3: Make a connection

To contact the server on a remote machine, the DDE client must use special names in place of the
usual service and topic names. Those names are as follows:

Service: \\computer\NDDE$
Topic: DDE share name

where computer should be replaced with the actual network name of the machine the DDE server
is running on. NDDE$ is like a file share but refers to Network DDE handlers on the machine
running the server. The DDE share name allows Windows to redirect the conversation to an actual
server and topic on the remote machine.

The VPascal Primer 100

Example 12.5.1: Using Network DDE

Suppose we have a machine called "ZEUS" running the DDE server. We now create a DDE share
called VAR$ on that machine and relate it to the V++ Var topic by specifying the service name
"Vpp" and the topic name "Var". When a client on another machine wants to connect, it uses the
service name "\\ZEUS\NDDE$" and the topic name "VAR$".

On the machine running the server, the request is translated to the local service name "Vpp" and
topic name "Var"

The server and client in this network DDE connection could both be copies of V++ running on
different machines. The server doesn't have to do anything special because the Windows DDE
sharing mechanism handles all the details. The client simply uses the special service and topic
names, as illustrated below:

var

 NetCh ;

 Count ;

begin

NetCh := DdeInitiate('\\ZEUS\NDDE$','VAR$') ;

if NetCh <> 0 then

 begin

 Count := DdeRequest(NetCh,'Count') ;

 WriteInfo('Remote variable = ', Count) ;

 DdeTerminate(NetCh) ;

 end;

end

Listing 12.5.1 Network DDE client module

 DDE Server
PC name: ZEUS
DDE share: VAR$

DDE Client
Service: \\ZEUS\NDDE$
Topic: VAR$

Network

Service:
Topic:

Vpp
Var

The VPascal Primer 101

13.0 Controlling laboratory equipment

13.1 RS-232 serial communications
Many devices communicate via a serial or RS-232 connection. Mostly, this means connecting an
instrument or another computer to the serial port connectors found on the back of a PC. There
can be up to 4 serial ports on a standard PC and some hardware allows up to 8 ports. The ports
are named COM1:, COM2: and so on, and are therefore sometimes called com ports.

To transmit data to a remote device it is placed in an output buffer and sent through the serial
port from there. Data received by the serial port is placed into an input buffer until it is processed.

VPascal modules can communicate with remote devices using the built-in serial communication
functions. An outline of performing serial communications follows.

Step Action Description

1 Open a serial port Before any communication can take place, a serial port must be

opened by the module with the OpenSerial function. All

subsequent serial functions in the module operate on the open port.

There are a number of line parameters that must be specified at the

time the port is opened, such as port number, baud rate, data bits,

etc.

2a Transmit Once a serial port has been opened you can transmit VPascal

variables or constants to the remote device using the Transmit

function. If the remote device needs a special series of characters

to tell it when the transmission is finished, this can be automatically

appended to every transmission (use SetTxEnd to select a

termination string).

2b Receive Receiving data is slightly more complicated than transmitting it

because you need to decide when the transmission is finished and

whether to wait for more characters. The RxWaiting function tells

you how many unprocessed characters are waiting in the input

buffer. You can read these one at a time with the RxChar function

or wait for a given number of characters and then read them all

with the RxString function.

A convenient method for receiving input is to select a termination

string which will indicate the end of a particular transmission - set

this up with the SetRxEnd function. When a termination string has

been selected, RxString will wait for a correctly terminated string

before returning. If there are several terminated strings already in

the buffer then these will be returned one at a time on each call to

RxString.

You can limit how long RxString should wait for a terminated

The VPascal Primer 102

string using the SetRxTimeout function.

3 Close the serial port When your communication is completed you should release the port

for use by other modules by calling the CloseSerial procedure. If

the port remains open then no other module will be able to use it

until the current "owner" terminates.

Table 13.1.1 Steps to successful serial communications.

Example 13.1.1: Opening and closing the serial port

This example shows how to correctly open the serial port and close it when complete. The
OpenSerial procedure attempts to open port 2 at 19200 baud with 8 data bits, no parity and 1
stop bit.

begin

OpenSerial(2, 19200, 8, NoParity, 1) ; // Open serial port

if SerialError <> 0 then

 Halt('Failed!') ; // Check for errors while opening

{Transmit and/or receive data here}

CloseSerial ; // Close serial port

end

Listing 13.1.1 Opening and closing the serial port.

The VPascal Primer 103

Example 13.1.2: Sending and receiving data through one serial port

This example shows how to send and receive data through one serial port. For an example of
managing more than one serial port at a time see Example 13.1.3 later in this section.

begin

{Prepare for communication}

OpenSerial(2, 19200, 8, NoParity, 1) ;

if SerialError <> 0 then Halt('Could not open COM2: port') ;

{Transmit}

TxFlush ; // Flush garbage in transmit buffer

Transmit('Hello!') ; // Send information

{Receive}

RxFlush ; // Flush garbage in receive buffer

SetRxEnd(chr(13)) ; // Wait until a carriage-return is received

SetRxTimeout(15000) ; // Timeout after 15 seconds

{Display results}

WriteInfo('Received: ',RxString) ;

{Close serial port}

CloseSerial ;

end

Listing 13.1.2 Communicating over one serial port.

The VPascal Primer 104

Example 13.1.3: Sending data through two serial ports

This example shows how to send data through two serial ports.

begin

{Open 2 serial ports}

OpenSerial(3, 9600, 8, NoParity, 1) ; // Open port 3 at 9600 baud

OpenSerial(4, 19200, 8, NoParity, 1) ; // Open port 4 at 19200 baud

{Transmit test messages}

SelectPort(3) ;

Transmit('Testing port #3') ;

SelectPort(4) ;

Transmit('Testing port #4') ;

{Close ports}

CloseSerial(4) ;

CloseSerial(3) ;

end

Listing 13.1.3 Communicating over two serial ports.

The VPascal Primer 105

13.2 Time lapse imaging
In time lapse imaging, we are required to capture multiple scheduled images, or a sequence with
a specific time delay between successive frames. Doing this in VPascal is relatively simple and can
be done in the background because modules may multitask with other operations.

Example 13.2.1: Principles of time lapse imaging

This example illustrates the essential features of a time lapse module. It contains an outer loop
which performs a task on each iteration (in this case, updating the status bar with a timer display)
and synchronization code which ensures that the outer loop only executes once in each time
period. This module is designed so that any key press will short cut the current iteration.

IMPORTANT: It may appear that the module is monopolizing the CPU with an inefficient delay loop
waiting for a specific time to elapse. However, VPascal is designed to multitask the execution of
modules with everything else the computer is doing. Therefore, you will find that you can continue
to use V++ and other applications even while the module is running and the timer display is
updating.

const

 Period = 2000 ; // time delay in milliseconds

var

 t1 ;

 i ;

begin

 ClearKeys ;

 i := 0 ;

 repeat

 t1 := Clock ;

 WriteStatus('Time lapse: ',i * Period / 1000 :4,' seconds') ;

 i := i + 1 ;

 repeat until (Clock >= t1 + Period) or KeyPressed ;

 until (ReadKey = vk_Escape) ;

 WriteStatus ;

end

Listing 13.2.1 Principles of time lapse imaging

Note: This direct technique illustrates the principles of time lapse but for most applications it is
much simpler to use the “Timers” timing generator library for VPascal. This is available for free
download from the Digital Optics web site: http://www.digitaloptics.co.nz/

The VPascal Primer 106

13.3 Advanced camera programming

13.3.1 Controlling multiple cameras
VPascal supports multiple PVCAM camera operation. Cameras may be operated consecutively
(whereby data is acquired from one camera before switching to another) or concurrently (where
more than one camera is acquiring data simultaneously).

Example 13.3.1: Switching between two cameras to acquire data

This example shows how to switch consecutively between two cameras in order to acquire data. In
this case the standard routine pvcCapture can be used together with pvcSelectCamera.

var

 ImageA, ImageB ;

begin

{Open cameras, just in case}

pvcOpenCamera('SenSys1') ;

pvcOpenCamera('MicroMax1') ;

{Acquire images}

pvcSelectCamera('SenSys1') ;

pvcSetExpTime(200) ;

ImageA := pvcCapture(0, 0, 511, 511) ;

pvcSelectCamera('MicroMax1') ;

pvcSetExpTime(1200) ;

ImageB := pvcCapture(0, 0, 1023, 1023, 2, 2) ;

{Display images}

Show(ImageA, 'SenSysImage1') ;

Show(ImageB, 'MicroMaxImage1') ;

end

Listing 13.3.1 Switching between two cameras to acquire data.

The VPascal Primer 107

Example 13.3.2: Acquiring data from two cameras simultaneously

This example shows how two cameras can acquire data simultaneously. The key is to start
acquiring data in each camera, and then monitor the progress of each exposure.

const

 Cam1 = 'PXL1' ;

 Cam2 = 'SenSys3' ;

var

 ImageA, ImageB ;

 Cam1Done, Cam2Done ;

begin

{Start exposures}

pvcSelectCamera(Cam1) ;

pvcSetExpTime(1000) ; // One second exposure

pvcStartCapture(0, 0, 500, 300) ;

pvcSelectCamera(Cam2) ;

pvcSetExpTime(2000) ; // Two second exposure

pvcStartCapture(100, 50, 600, 200) ;

{Check status of each and read image when ready}

Cam1Done := false ;

Cam2Done := false ;

repeat

 {Check camera 1}

 if not Cam1Done then

 begin

 Cam1Done := pvcCheckStatus(Cam1) = pvc_ReadoutComplete ;

 if Cam1Done then

 begin

 pvcSelectCamera(Cam1) ;

 ImageA := pvcEndCapture ;

The VPascal Primer 108

 end ;

 end ;

 {Check camera 2}

 if not Cam2Done then

 begin

 Cam2Done := pvcCheckStatus(Cam2) = pvc_ReadoutComplete ;

 if Cam2Done then

 begin

 pvcSelectCamera(Cam2) ;

 ImageB := pvcEndCapture ;

 end ;

 end ;

until Cam1Done and Cam2Done ;

{Show results}

Show(ImageA,Cam1+'Image') ;

Show(ImageB,Cam2+'Image') ;

end

Listing 13.3.2 Acquiring data from two cameras simultaneously.

The example shown in Listing 13.3.2 is just one possibility for capturing data simultaneously. In
particular, note that the images are note displayed until both cameras have finished acquiring
data. This may be undesirable when there is a large disparity in exposure times, or the exposures
are triggered rather than timed.

In order to display the images as soon as they are ready, change the innermost conditional
statements for each camera to that shown in Listing 13.3.3 below:

The VPascal Primer 109

 ...

 if Cam1Done then

 begin

 pvcSelectCamera(Cam1) ;

 ImageA := pvcEndCapture ;

 Show(ImageA,Cam1+'Image') ; // Move "Show" to here

 end ;

 end ;

 ...

Listing 13.3.3 Displaying data as soon as it is ready.

There may also be occasions where many cameras are exposing, in which case it may be desirable
to move the pvcEndCapture functions outside the main repeat-loop. The modification is shown in
Listing 13.3.4.

...

{Show results}

pvcSelectCamera(Cam1) ;

ImageA := pvcEndCapture ;

Show(ImageA,Cam1+'Image') ;

pvcSelectCamera(Cam2) ;

ImageB := pvcEndCapture ;

Show(ImageB,Cam2+'Image') ;

end

Listing 13.3.4 Delaying collection of data until all cameras have finished.

The VPascal Primer 110

13.3.2 Aborting an exposure
The functions pvcCapture and pvcSequence cannot be aborted from within VPascal. To allow the
user to prematurely terminate a camera exposure you must use the pvcStartCapture /
pvcEndCapture pair.

Example 13.3.5: Manually aborting an exposure operation

This example starts an exposure and then continually checks the status of the exposure to see
when it is complete. At the same time, the code is looking for a key press. If a key press is
detected the exposure operation is terminated.

var

 QuitNow ;

 Image ;

begin

{Set exposure time and start exposure}

pvcSetExpTime(10000) ;

pvcStartCapture(100,100,800,700) ;

{Loop on status}

ClearKeys ;

repeat

 QuitNow := KeyPressed ;

until (pvcCheckStatus = pvc_ReadoutComplete) or QuitNow ;

{Show result if not aborted}

if QuitNow then

 pvcAbort

else

 begin

 Image := pvcEndCapture ;

 Show(Image) ;

 end ;

end

Listing 13.3.5 Using a key press to manually terminate an exposure in progress.

The VPascal Primer 111

Example 13.3.6: Aborting a triggered exposure after a timeout period

This example starts a triggered exposure and then continually checks the status of the exposure
to see when it is complete. If the exposure is not complete within a specified time, the exposure
operation is terminated. The exposure is also aborted if a key is pressed.

const

 Timeout = 10000 ; // Time out interval is 10 seconds

var

 QuitNow ;

 Image ;

 StopTime ;

begin

{Determine the time after which the operation should abort}

StartClock ;

StopTime := Clock + Timeout ;

{Wait for trigger, then expose for 10ms}

pvcSetExpTime(100) ;

pvcSetExpMode(pvc_ExpTriggerFirst) ;

pvcStartCapture(100,100,800,700) ;

{Loop on status}

ClearKeys ;

repeat

 QuitNow := KeyPressed or (Clock > StopTime) ;

until (pvcCheckStatus = pvc_ReadoutComplete) or QuitNow ;

{Show result if not aborted}

if QuitNow then

 pvcAbort

else

 begin

The VPascal Primer 112

 Image := pvcEndCapture ;

 Show(Image,'myimage') ;

 end ;

end

Listing 13.3.6 Terminating an exposure after a timeout period, or if a key is pressed.

13.3.3 ICL scripts
PVCAM-compatible cameras support the low-level Imager Control Language (ICL) interface. ICL
scripts can be run from VPascal using pvcRunICL and pvcStartICL / pvcEndICL.

Example 13.3.7: Running an ICL script using pvcRunICL

This example uses pvcRunICL to execute a simple image acquisition script in ICL. The ICL code is
shown after Listing 13.3.6.

const

 ICLScript = 'C:\Documents\ICL\SnapCCD.icl' ;

var

 Image ;

begin

Image := pvcRunICL(ICLScript) ;

Show(Image,'ICLImage') ;

end

Listing 13.3.7 Executing a simple ICL script.

Assume script is saved in file C:\Documents\ICL\SnapCCD.icl

script_begin();

shutter_open(); /* Take exposure */

expose(200);

shutter_close();

pixel_readout(0, 512, 2, 512, 2); /* Collect data */

pixel_display(256, 256);

script_end(1);

ICL script for Listings 13.3.6 and 13.3.7

The VPascal Primer 113

Example 13.3.8: Running an ICL using pvcStartICL and pvcEndICL

This example uses pvcStartICL / pvcEndICL to execute a simple image acquisition script in ICL.
This form of execution makes it possible to abort the script while still executing in the camera. The
ICL code is the same as the previous example. (Note that the syntax is identical to that for
pvcStartCapture / pvcEndCapture.)

const

 ICLScript = 'C:\Documents\ICL\SnapCCD.icl' ;

var

 Image, QuitNow ;

begin

{Compile and start ICL script}

pvcStartICL(ICLScript) ;

if pvcError then Halt(pvcErrorMsg(pvcErrorCode)) ;

{Loop on status}

ClearKeys ;

repeat

 QuitNow := KeyPressed ;

until (pvcCheckStatus = pvc_ReadoutComplete) or QuitNow ;

{Show result if not aborted}

if QuitNow then

 pvcAbort

else

 begin

 Image := pvcEndICL ;

 Show(Image,'ICLImage') ;

 end ;

end

Listing 13.3.8 Executing an ICL script using pvcStartICL / pvcEndICL.

The VPascal Primer 114

13.4 Controlling a video frame grabber
If you have a video frame grabber or some other video device installed, you can control it from a
VPascal module. The structure of the VPascal video control routines is broadly similar to that used
for controlling PVCAM cameras – for example, routine names are usually the same. However,
video frame grabbers and PVCAM cameras are controlled by separate sets of routines. The video
routines all start with the prefix vid.

13.4.1 Video device architecture
V++ can control multiple video devices simultaneously, even if the devices are controlled by
different drivers or are from different manufacturers. In VPascal, each device has a name and an
index number that you can use to refer to it. Generally, you will use the index number to select a
specific device but you can convert a device name to an index using the vidIndexOf function.

If there is only one video device installed, it is always selected by default but if there are several
you must use vidSelectDevice to indicate which one to use.

Example 13.4.1: Looking for video devices

The following simple example displays a list of installed video devices

var

 i ;

begin

for i := 0 to vidGetDeviceCount - 1 do

 writeln(i:2,': ',vidGetDeviceName(i)) ;

end

Listing 13.4.1 List installed video devices

13.4.2 Acquiring and displaying a video image
Single-frame images are acquired using the vidCapture function while sequences are acquired
using the vidSequence function.

Example 13.4.2: Acquiring a single frame

The following example acquires a single frame from the video frame grabber and displays the
result. It assumes that the frame grabber is already selected.

The VPascal Primer 115

var

 Image ;

begin

Image := vidCapture ;

Show(Image) ;

end

Listing 13.4.2 Capturing a single video frame

Example 13.4.3: Acquiring a sequence of video frames

This example acquires a series of frames from the frame grabber and displays the result. It
assumes that the frame grabber is already selected.

var

 Image ;

begin

Image := vidSequence(10) ; // Capture 10 frames as fast as possible

Show(Image) ;

end

Listing 13.4.3 Capturing a series of video frames.

The VPascal Primer 116

13.4.3 Using a region of interest (ROI)
If you need to capture a small part of the video frame you must first set up a region of interest, or
ROI, for the device. This indicates that only the pixels in the ROI should be returned by the
vidCapture or vidSequence routines.

Example 13.4.4: Capture a region of interest from a video camera

var

 x1,y1 ;

 xs,ys ;

 Image ;

begin

{ determine coordinates of central region }

xs := vidGetXSize / 2 ;

ys := vidGetYSize / 2 ;

x1 := xs / 2 ;

y1 := ys / 2 ;

{ set up ROI }

vidSetROI(x1,y1,x1+xs-1,y1+ys-1) ;

{ capture }

vidUseROI(true) ;

Image := vidCapture ;

Show(Image) ;

end

Listing 13.4.4 Capture a region of interest from a video camera

13.4.4 Asynchronous video capture
The vidStartCapture procedure is similar to vidCapture except that it returns immediately
instead of waiting for the acquisition to finish. This allows you to perform other operations while
the frame grabber captures the data. When the captured image is ready (check this using the
vidCheckStatus function) you use vidEndCapture to read it out.

Example 13.4.5: Asynchronous control of multiple frame grabbers

As well as providing for pipeline processing (ie. processing frame n while frame n+1 is being
acquired) the asynchronous routines allow you to perform simultaneous acquisitions on multiple
frame grabbers, as illustrated in the following example.

The VPascal Primer 117

var

 Image0,Image1 ;

 Ready0,Ready1 ;

 Quit ;

begin

{ Start acquiring on device 0 }

vidSelectDevice(0) ;

vidStartCapture ;

{ Start acquiring on device 1 }

vidSelectDevice(1) ;

vidStartCapture ;

Quit := false ;

repeat

 { Check status of devices }

 Ready0 := (vidCheckStatus(0) = vid_Ready) ;

 Ready1 := (vidCheckStatus(1) = vid_Ready) ;

 { Do other things }

 Quit := KeyPressed ;

until (Ready0 and Ready1) or Quit ;

{ Readout device 0 }

vidSelectDevice(0) ;

Image0 := vidEndCapture ;

{ Readout device 1 }

vidSelectDevice(1) ;

Image1 := vidEndCapture ;

{ Display images }

Show(Image0) ;

Show(Image1) ;

end

Listing 13.4.5 Asynchronous control of multiple frame grabbers

The VPascal Primer 118

13.5 Controlling a TWAIN scanner or camera
If any TWAIN devices, such as flat-bed scanners or digital cameras, are installed the
TwainAcquire function opens the interface to the selected device so that an image can be
acquired. If the acquisition is cancelled the function returns a null variable. If there is more than
one TWAIN device, you can display the Select Source dialog box using TwainSelectSource.

You can access TWAIN devices in parallel with PVCAM cameras and video frame grabbers.

Example 13.5.1: Acquiring an image from a TWAIN source

This example shows how a module can ask the user to select a TWAIN device (eg. a scanner or a
digital camera) and then open the native image acquisition interface for that device. If an image is
captured, it is moved to the Image variable.

var

 Image ;

begin

TwainSelectSource ;

Image := TwainAcquire ;

if IsImage(Image) then

 Show(Image)

else

 WriteInfo('No image was acquired') ;

end

Listing 13.5.1 Acquiring an image from a TWAIN device

The VPascal Primer 119

14.0 Linking to external libraries

14.1 Calling DLL code
Using DLLs is a powerful way to extend the capabilities of V++. You can directly call functions that
you write yourself or functions contained in 3rd party libraries. You can even call functions in the
Windows API libraries.

14.1.1 Creating the DLL
Use any language to write an external library providing it will generate a standard 32-bit Windows
DLL. The functions to be called from VPascal must be compiled in exportable form with standard
calling conventions (refer to your compiler documentation to verify that it supports the Windows
standard call model). Functions can exported either by name or by an explicit index.

To access image data passed to your function by VPascal you also need to include the Image
Descriptor Block (IDB) type definitions in your project.

14.1.2 Writing the module
Declare the DLL functions to use in the VPascal module. Unlike functions defined inside the
module itself, external functions must be declared with explicit parameter types.

For example:

procedure MyProc(a,b:integer; Image:pointer) ; external 'MyCode' ;

The external keyword is used to indicate that the procedure or function is located in a DLL and
must be followed by the name of the DLL concerned. The DLL name does not have to be fully
qualified and in this example the extension defaults to '.DLL' and the library name is therefore
MYCODE.DLL.

There are seven data types recognized for declaring parameters to external routines: byte, short
integer, word, long integer, single, double, and pointer (note that integer is the same as long
integer). Image parameters must always be declared as type pointer.

The VPascal external routine declaration above would correspond to one of the following
declarations in a DLL written in C:

void MyProc(int a, int b, void *Image) ;

void MyProc(int a, int b, TIDB *Image) ;

The VPascal Primer 120

In Pascal, the DLL's procedure declaration would be very similar to the first line of the VPascal
declaration shown above.

Note: If you declare a parameter with the var keyword then a pointer to the variable is passed to
the external routine.

14.1.3 Calling an external routine
External routines are called exactly like functions and procedures defined inside the module itself.
You can pass virtually all of your VPascal variables to an external function, including both scalars
and images. Parameters are usually passed by value, except images that are always passed by
reference. You can pass the address of a variable using the Address function.

14.1.4 Using images
Images are stored as contiguous packed arrays of pixel values organized in row-wise order.
Information about the dimensions of the image, its type, and the memory location of the pixel
data is stored separately in an Image Descriptor Block, or IDB.

The VPascal declaration of an external routine always shows an image parameter as a pointer,
however there are two ways that the image parameter may actually be passed to the external
routine:

1. As a pointer to the Image Descriptor Block

2. As a pointer to the raw image data

The default is the first case. If you call the external routine as follows then a pointer to the IDB
will be passed:

MyProc(a, b, Image) ;

To pass a pointer to the raw data only then call the external routine as follows:

MyProc(a, b, Address(Image)) ;

14.2 Direct access to image memory

14.2.1 Getting a pointer to image memory
To get a pointer to the memory used to store image data use the Address function. Address is a
function that returns a pointer (as a 32-bit integer) to the data area of a variable.

For example, say you have a function that takes a pointer to a block of memory containing signed
integers and adds a constant to every integer. In C the external function may be declared like
this:

The VPascal Primer 121

void AddConst(int *Mem[], int nPts, int Num) ;

// Mem = pointer to integers in memory

// nPts = number of integers in memory

// Num = constant to add to integers

In VPascal this function would be declared like this:

procedure AddConst(Mem:pointer ; nPts,Num:integer) ; external 'SomeDLL.DLL' ;

A VPascal code fragment illustrating how this routine might be called is:

...

{Get current image and check it is integer}

GetActiveImage(Img) ;

if TypeOf(Img) <> integer then

 Halt('Image must be integer!') ;

{Call external routine}

nPixels := GetXSize(Img) * GetYSize(Img) ;

AddConst(Address(Img), nPixels, 123) ;

...

The VPascal Primer 122

14.2.2 Memory Layout
An image is simply a large 2D or 3D array of pixels, each of which represents an intensity value.
The data is stored in memory as a single packed contiguous block. Each image is stored row-wise:
that is the x-coordinate changes most rapidly, followed by the y-coordinate. Sequences are stored
as consecutive images, with the z-coordinate changing least rapidly.

Image memory blocks contain only the image pixels themselves. There are no headers and there
is no padding.

14.2.3 Accessing the Image Descriptor Block
Every image in VPascal contains a block of information describing the content and layout of the
image. This information is made available when the image variable, say Img, is used as a
parameter rather than Address(Img). For this to work, the parameter to the external code
must be declared as pointer. For example, an external procedure is declared as

procedure MyProc(x:pointer) ; external 'SomeDLL.DLL' ;

The external procedure call

MyProc(Address(Img)) ;

passes the address of the image memory to MyProc whereas

MyProc(Img) ;

passes the address of the image descriptor block to MyProc.

Row 0
Row 1

Row 6

Row 2
Row 3
Row 4
Row 5

Row 0 Row 1 Row 2...

Image data

Row-wise storage in memory

The VPascal Primer 123

14.2.4 Image Descriptor Block (IDB) Layout
The memory layout of the image descriptor block is shown below using a Pascal record and a C
structure. When using an image descriptor do not write past the end of the structure.

Pascal Record

type

 TType = (typ_Null, typ_Binary, typ_Byte, typ_Shortint, typ_Word,

 typ_Longint,typ_Single, typ_Double, typ_Complex, typ_DblComplex,

 typ_RGB, typ_RGB48, typ_RGBFloat) ;

 PIDB = ^TIDB ;

 TIDB = record

 aType : TType ; // image data type (4 byte enumerated scalar)

 xSize : integer ; // image width (32-bit signed integer)

 ySize : integer ; // image height (32-bit signed integer)

 zSize : integer ; // image depth (32-bit signed integer)

 tSize : integer ; // reserved for future use (4 bytes)

 Data : pointer ; // pointer to start of image memory

 end ;

The VPascal Primer 124

C Structure

typedef enum {

 typ_Null,typ_Binary, typ_Byte, typ_Shortint, typ_Word,

 typ_Longint, typ_Single, typ_Double, typ_Complex, typ_DblComplex,

 typ_RGB, typ_RGB48, typ_RGBFloat,

} TType ;

typedef struct {

 TType aType ; // image data type (4 byte enumerated scalar)

 int xSize ; // image width (32-bit signed integer)

 int ySize ; // image height (32-bit signed integer)

 int zSize ; // image depth (32-bit signed integer)

 int tSize ; // reserved for future use (4 bytes)

 void *Data ; // pointer to start of image memory

} TIDB, *PIDB ;

14.3 Implementing Custom Dialog Boxes
To add a custom dialog box to V++ you must write a DLL that implements the dialog box and
provides an access function that you can call from VPascal to display it and return results. Using
the same technique you can make Windows common dialogs available as well (there is an
example of this on the Digital Optics web site).

The VPascal Primer 125

14.4 Calling the Windows API
Using VPascal, you almost never need to worry about Windows. But occasionally, a module may
have specialized requirements that require it to call Windows API functions directly.

The Windows API interface is implemented as a set of DLLs (like KERNEL32.DLL, USER32.DLL etc)
that export the functions programmers need to communicate with the operating system. If we
know the name and parameter list for one of these functions we can link to it in VPascal and call it
when the module is running.

For example, consider the Windows SendMessage function which is used to send Windows
messages to applications or to individual windows. SendMessage is exported by the USER32.DLL
library and can be declared in VPascal as follows:

function SendMessage(Handle,Message,wParam,lParam:integer) : integer ;

external 'User32' ; name 'SendMessageA' ;

SendMessage is declared above as a function but it's also possible to declare it as a procedure if
you don't need the result. Note also that we used the name keyword to specify the actual name
used in USER32.DLL to export the function.

Having declared it, you can now call SendMessage just as you would call any other VPascal
function.

Example 14.4.1: Closing V++ from a module

As a practical example, consider how to shut down V++ from a module (there's no built-in
function to do this). You can shut down by using SendMessage to send the main V++ window a
Windows wm_Close message.

In order to send the message, you first need to declare another API function, FindWindow, which
you use to determine the handle of the main V++ window.

function FindWindow(ClassName,WindowName:pointer) : integer ;

external 'User32' ; name 'FindWindowA' ;

procedure SendMessage(Handle,Message,wParam,lParam:integer) ;

external 'User32' ; name 'SendMessageA' ;

const

 wm_Close = 16 ;

begin

SendMessage(FindWindow('TFrameForm','V++'),wm_Close,0,0) ;

end

Listing 14.4.1 Closing V++ from a module

The VPascal Primer 126

15.0 Advanced Development

15.1 VPascal Architectures
An advanced VPascal programmer can implement a great deal of sophisticated custom
functionality within the V++ environment. This might include an extended user interface
(toolbars, menus and custom dialog boxes), new imaging routines, custom hardware interfacing,
networking, interaction with external applications and more.

There are several broad ways an advanced VPascal programming project can be structured and to
describe the options we will borrow some terminology from the networking world.

The key to a successful project is breaking down the problem in an appropriate way and then
implementing the component VPascal modules and any external code that you may need.

This chapter assumes that you are already familiar with general VPascal programming issues, DDE
communications and linking to external libraries. If not, then please read the appropriate earlier
chapters before returning to this chapter.

15.1.1 Front-end shell model
The front-end shell model is the simplest structure from the VPascal point of view. It involves
implementing all custom functionality in an external DLL and writing a VPascal module to link it
into V++ by providing a toolbar and/or new menu commands.

Although very simple at the VPascal end, this model requires you to be familiar with conventional
Windows programming and to be capable of producing a DLL.

The main disadvantage of this model is that you don't make good use of VPascal's powerful image
handling capabilities.

15.1.2 Client-server model
Client-server is a very useful architecture for many advanced VPascal projects and is particularly
well-suited to hardware integration. In this model, all core functionality is built into a single
module which makes a selection of procedures and variables available using DDE sharing.
Additional modules (the clients) can then be written as required and can use the functions and
variables shared by the server.

For example, to integrate a motorized filter wheel into V++ you would start by writing a server
module that includes all of the control functions for the wheel and shares these via DDE. The
server might also implement a toolbar and some menu commands to allow the user to manually
control the wheel. Client modules can then be written which perform automated filter wheel
control sequences by calling the server's shared routines. An example of a VPascal filter wheel
controller with a client-server architecture can be downloaded from the Digital Optics web site.

Note that although shared procedures cannot accept parameters, in practice you can pass
parameters by setting the values of server shared variables before calling a procedure.

One advantages of the client-server model is the fact that client modules can be small because
they do not have to re-implement the functionality that resides in the server. Also, using DDE as

The VPascal Primer 127

the communication mechanism means that the server can be triggered by external applications as
well as by other modules. This can even take place across a network.

15.1.3 Peer-to-peer model
This model is really a variation of the client-server model. The difference is that all participating
modules may be servers or clients or both. This approach is suited to projects that can be broken
down into roughly equal sized units each of which can be implemented as an individual module.

Inter-module communication is still accomplished using DDE and the peer-to-peer model
therefore retains all of the advantages of the client-server model.

An additional advantage of peer-to-peer is that you can reconfigure your system simply by
selecting which modules will be compiled. This includes the user interface if you have distributed
the implementation of toolbars and menus commands among the various modules.

15.1.4 Server-only model
The server-only architecture basically involves implementing only the server side of a client-server
system and providing all triggering and user interface code in an external program. This gives you
total freedom in the implementation of your project but this model is probably the most difficult to
implement well.

Again, the communication mechanism is DDE which provides the external program with access to
shared procedures and variables in the VPascal server module. Using DDE, you can also get
access to other V++ objects, including desktop images and module editors (regardless of whether
they are linked to a VPascal variable).

15.1.5 Hybrid models
The models presented here are examples of how to describe the architectures you use in
advanced VPascal projects. However, in reality you can mix the characteristics of several models
to suit your own requirements. For example, any of the architectures that use DDE can double as
a server-only architecture. Also, you may choose to implement parts of any project in an external
DLL library – that approach is not limited to the front-end shell model.

Ultimately, the best architecture is the one that solves your own specific set of problems.

	Preface
	1.0 Variables and data types
	1.1 Scalars (numbers)
	1.2 Arrays (images)
	1.3 Strings (text)
	1.4 Special variables
	1.5 Data types
	1.6 Variables and desktop images

	2.0 Expressions
	2.1 What is an expression?
	2.2 Image expressions
	2.4 Type precedence
	2.5 String expressions

	3.0 Accessing pixels in an image
	3.1 Index notation
	3.2 Accessing a single pixel
	3.2 Index-range notation
	3.3 Accessing a region
	3.4 Accessing a row
	3.5 Accessing a column
	3.6 Accessing frames in a sequence
	3.9 Omitting indexes and index-range symbols
	3.10 Omitting range terminals
	3.11 Requirements for the right-hand side of an assignment
	3.12 Copying a column into a row, etc

	4.0 Conditional calculations
	4.1 Conditional statements
	4.2 Relational operators
	4.3 The Any and All functions
	4.4 The Find function
	4.5 Counting pixels

	5.0 Strings and filenames
	5.1 String format
	5.2 String output functions
	5.3 String input functions
	5.4 String-number conversions
	5.5 Common string operations
	5.6 Filenames

	6.0 File handling
	6.1 Does a file exist?
	6.2 Searching a sequence of directories for a file
	6.3 Iterating over a sequence of files
	6.4 File-size and disk-size functions
	6.5 Creating a directory
	6.6 Changing the default directory

	7.0 Menus and toolbars
	7.1 Running a module from a menu
	7.2 Running a procedure from a menu
	7.3 Separators and accelerators
	7.4 Running a module from a toolbar button
	7.5 Running a procedure from a toolbar button
	7.6 Naming a toolbar

	8.0 Running code at start-up and at shutdown
	8.1 Making a module ready to run at start-up
	8.2 Running a module at start-up
	8.3 Running a procedure at shutdown

	9.0 Initialization files
	9.1 What are initialization files?
	9.2 Using a private initialization file
	9.3 Using the V++ initialization file

	10.0 Plotting
	10.1 Creating a plot window
	10.2 Simple plots
	10.3 Adding titles and captions
	10.4 Plotting X and Y data

	11.0 Controlling a PVCAM camera
	11.1 Opening and closing a camera
	11.2 Acquiring and displaying an image
	11.3 Binning the CCD
	11.5 Detecting and handling camera errors

	12.0 Dynamic Data Exchange
	12.1 Sending data to applications via DDE
	12.2 Exchanging data with Excel via DDE
	12.3 Controlling V++ with DDE
	12.4 Communication between VPascal modules
	12.5 Remote communication with Network DDE

	13.0 Controlling laboratory equipment
	13.1 RS-232 serial communications
	13.2 Time lapse imaging
	13.3 Advanced camera programming
	13.4 Controlling a video frame grabber
	13.5 Controlling a TWAIN scanner or camera

	14.0 Linking to external libraries
	14.1 Calling DLL code
	14.2 Direct access to image memory
	14.3 Implementing Custom Dialog Boxes
	14.4 Calling the Windows API

	15.0 Advanced Development
	15.1 VPascal Architectures

